Spaces:
Runtime error
Runtime error
Update retriever.py
Browse files- retriever.py +22 -16
retriever.py
CHANGED
@@ -2,7 +2,7 @@ from smolagents import Tool
|
|
2 |
|
3 |
class FrugalAI_methods(Tool):
|
4 |
name = "FrugalAI_methods"
|
5 |
-
description = "Retrieves methods for model frugalization."
|
6 |
inputs = {
|
7 |
"method": {
|
8 |
"type": "string",
|
@@ -10,25 +10,31 @@ class FrugalAI_methods(Tool):
|
|
10 |
}
|
11 |
}
|
12 |
output_type = "string"
|
13 |
-
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
f"To apply pruning to a model, use the following code snippet: {code}. "
|
23 |
f"You should adapt it to your actual implementation. In particular, the 'amount' parameter "
|
24 |
f"can be increased or decreased depending on the initial number of weights and the complexity of your use case (minimu value: 0, maximum value: 1)."
|
25 |
)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
f"To apply quantization to a model, use the following code snippet: {code}."
|
34 |
)
|
|
|
2 |
|
3 |
class FrugalAI_methods(Tool):
|
4 |
name = "FrugalAI_methods"
|
5 |
+
description = "Retrieves methods for model frugalization. It will return ideas to frugalize a code, please use it."
|
6 |
inputs = {
|
7 |
"method": {
|
8 |
"type": "string",
|
|
|
10 |
}
|
11 |
}
|
12 |
output_type = "string"
|
13 |
+
|
14 |
+
def forward(self, method):
|
15 |
+
ideas=[]
|
16 |
+
ideas.append(pruning())
|
17 |
+
ideas.append(quantization())
|
18 |
+
return ideas
|
19 |
+
|
20 |
+
def pruning(self,method: str):
|
21 |
+
"""
|
22 |
+
Optimizes models by removing unnecessary components, such as certain weights in a neural network.
|
23 |
+
This function demonstrates how to apply pruning.
|
24 |
+
"""
|
25 |
+
model = apply_pruning(model, amount=0.3)
|
26 |
+
code = "model = apply_pruning(model, amount=0.3)"
|
27 |
+
return (
|
28 |
f"To apply pruning to a model, use the following code snippet: {code}. "
|
29 |
f"You should adapt it to your actual implementation. In particular, the 'amount' parameter "
|
30 |
f"can be increased or decreased depending on the initial number of weights and the complexity of your use case (minimu value: 0, maximum value: 1)."
|
31 |
)
|
32 |
|
33 |
+
def quantization(self, method: str):
|
34 |
+
"""
|
35 |
+
Converts high-precision weights into lower-precision one to reduce cost.
|
36 |
+
"""
|
37 |
+
code = "model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)"
|
38 |
+
return (
|
39 |
f"To apply quantization to a model, use the following code snippet: {code}."
|
40 |
)
|