File size: 9,914 Bytes
e1a6cb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

import gradio as gr
from app import demo as app
import os

_docs = {'GradioDesigner': {'description': 'A visual designer component for building Gradio layouts with all components', 'members': {'__init__': {'value': {'type': 'dict | None', 'default': 'None', 'description': None}, 'label': {'type': 'str | None', 'default': 'None', 'description': None}}, 'postprocess': {'value': {'type': 'dict | None', 'description': None}}, 'preprocess': {'return': {'type': 'dict | None', 'description': None}, 'value': None}}, 'events': {'change': {'type': None, 'default': None, 'description': 'Triggered when the value of the GradioDesigner changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input.'}, 'input': {'type': None, 'default': None, 'description': 'This listener is triggered when the user changes the value of the GradioDesigner.'}}}, '__meta__': {'additional_interfaces': {}, 'user_fn_refs': {'GradioDesigner': []}}}

abs_path = os.path.join(os.path.dirname(__file__), "css.css")

with gr.Blocks(
    css=abs_path,
    theme=gr.themes.Default(
        font_mono=[
            gr.themes.GoogleFont("Inconsolata"),
            "monospace",
        ],
    ),
) as demo:
    gr.Markdown(
"""
# `gradio_gradiodesigner`

<div style="display: flex; gap: 7px;">
<img alt="Static Badge" src="https://img.shields.io/badge/version%20-%200.0.1%20-%20orange">  
</div>

gradio designer
""", elem_classes=["md-custom"], header_links=True)
    app.render()
    gr.Markdown(
"""
## Installation

```bash
pip install gradio_gradiodesigner
```

## Usage

```python
import gradio as gr
from gradio_gradiodesigner import GradioDesigner
import json

def analyze_design(design_config):
    \"\"\"Analyze the design configuration\"\"\"
    if not design_config or not isinstance(design_config, dict):
        return "No design configuration provided"
    
    components = design_config.get('components', [])
    
    # Count components by type
    component_types = {}
    for comp in components:
        comp_type = comp.get('type', 'Unknown')
        component_types[comp_type] = component_types.get(comp_type, 0) + 1
    
    # Calculate coverage area
    if components:
        positions = [(comp['position']['x'], comp['position']['y']) for comp in components]
        min_x, min_y = min(pos[0] for pos in positions), min(pos[1] for pos in positions)
        max_x, max_y = max(pos[0] for pos in positions), max(pos[1] for pos in positions)
        coverage = f"{max_x - min_x} x {max_y - min_y} pixels"
    else:
        coverage = "No components"
    
    analysis = f\"\"\"πŸ“Š **Design Analysis**

**Component Summary:**
β€’ Total components: {len(components)}
β€’ Component types: {dict(component_types)}
β€’ Canvas coverage: {coverage}

**Component Details:**
\"\"\"
    
    for i, comp in enumerate(components, 1):
        analysis += f"\n{i}. **{comp['type']}** (`{comp['id']}`)"
        analysis += f"\n   - Position: ({comp['position']['x']}, {comp['position']['y']})"
        analysis += f"\n   - Size: {comp['size']['width']}Γ—{comp['size']['height']}"
        if comp.get('props', {}).get('label'):
            analysis += f"\n   - Label: \"{comp['props']['label']}\""
    
    return analysis

def generate_gradio_code(design_config):
    \"\"\"Generate complete Gradio code from design\"\"\"
    if not design_config or not isinstance(design_config, dict):
        return "# No design to generate code from"
    
    components = design_config.get('components', [])
    
    code = '''import gradio as gr

def process_input(*args):
    \"\"\"Process the inputs from your app\"\"\"
    return "Hello from your generated app!"

with gr.Blocks(title="Generated Gradio App") as demo:
    gr.Markdown("# πŸš€ Generated Gradio App")
    gr.Markdown("This app was generated from your visual design!")
    
'''
    
    # Sort components by position (top to bottom, left to right)
    sorted_components = sorted(components, key=lambda c: (c['position']['y'], c['position']['x']))
    
    component_vars = []
    
    for comp in sorted_components:
        comp_type = comp.get('type', 'Textbox')
        comp_id = comp.get('id', 'component')
        props = comp.get('props', {})
        
        # Build component declaration
        prop_parts = []
        for key, value in props.items():
            if key in ['label', 'placeholder', 'value'] and isinstance(value, str):
                prop_parts.append(f'{key}="{value}"')
            elif key in ['minimum', 'maximum', 'step', 'lines', 'max_length', 'precision'] and isinstance(value, (int, float)):
                prop_parts.append(f'{key}={value}')
            elif key == 'choices' and isinstance(value, list):
                prop_parts.append(f'{key}={value}')
            elif isinstance(value, bool):
                prop_parts.append(f'{key}={value}')
        
        prop_string = ", ".join(prop_parts) if prop_parts else ""
        
        code += f"    {comp_id} = gr.{comp_type}({prop_string})\n"
        component_vars.append(comp_id)
    
    # Add a simple interaction if there are components
    if component_vars:
        inputs = [var for var in component_vars if not var.startswith('button')]
        outputs = [var for var in component_vars if var.startswith('button')]
        
        if not outputs:
            outputs = inputs[:1]  # Use first input as output if no buttons
        
        if inputs and outputs:
            code += f"\n    # Add interactions\n"
            code += f"    # Example: connect inputs to outputs\n"
            code += f"    # {outputs[0]}.click(process_input, inputs=[{', '.join(inputs)}], outputs=[{outputs[0]}])\n"
    
    code += '''
if __name__ == "__main__":
    demo.launch()
'''
    
    return code

with gr.Blocks(title="Gradio Visual Designer Pro", theme=gr.themes.Soft()) as demo:
    gr.Markdown(\"\"\"
    # 🎨 Gradio Visual Designer Pro
    
    **Build your Gradio apps visually!** Drag and drop components, customize properties, and generate production-ready code.
    
    **Features:** 25+ Gradio components β€’ Real-time editing β€’ Code generation β€’ Export options
    \"\"\")
    
    with gr.Row():
        designer = GradioDesigner(
            label="Visual App Designer",
            value={"components": [], "layout": "blocks"}
        )
    
    with gr.Row():
        with gr.Column(scale=1):
            analysis_output = gr.Markdown(
                value="Design analysis will appear here...",
                label="Design Analysis"
            )
        
        with gr.Column(scale=1):
            code_output = gr.Code(
                label="Generated Gradio Code",
                language="python",
                value="# Design your app above to see generated code",
                lines=20
            )
    
    with gr.Row():
        analyze_btn = gr.Button("πŸ“Š Analyze Design", variant="secondary")
        generate_btn = gr.Button("πŸš€ Generate Code", variant="primary")
        clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="stop")
    
    # Event handlers
    designer.change(
        fn=analyze_design,
        inputs=[designer], 
        outputs=[analysis_output]
    )
    
    analyze_btn.click(
        fn=analyze_design,
        inputs=[designer],
        outputs=[analysis_output]
    )
    
    generate_btn.click(
        fn=generate_gradio_code,
        inputs=[designer],
        outputs=[code_output]
    )
    
    clear_btn.click(
        fn=lambda: {"components": [], "layout": "blocks"},
        outputs=[designer]
    )

if __name__ == "__main__":
    demo.launch()

```
""", elem_classes=["md-custom"], header_links=True)


    gr.Markdown("""
## `GradioDesigner`

### Initialization
""", elem_classes=["md-custom"], header_links=True)

    gr.ParamViewer(value=_docs["GradioDesigner"]["members"]["__init__"], linkify=[])


    gr.Markdown("### Events")
    gr.ParamViewer(value=_docs["GradioDesigner"]["events"], linkify=['Event'])




    gr.Markdown("""

### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.



 ```python
def predict(
    value: dict | None
) -> dict | None:
    return value
```
""", elem_classes=["md-custom", "GradioDesigner-user-fn"], header_links=True)




    demo.load(None, js=r"""function() {
    const refs = {};
    const user_fn_refs = {
          GradioDesigner: [], };
    requestAnimationFrame(() => {

        Object.entries(user_fn_refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}-user-fn`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })

        Object.entries(refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })
    })
}

""")

demo.launch()