Spaces:
Running
Running
Create timeline_generator.py
Browse files- timeline_generator.py +149 -0
timeline_generator.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import graphviz
|
| 2 |
+
import json
|
| 3 |
+
from tempfile import NamedTemporaryFile
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
def generate_timeline_diagram(json_input: str, output_format: str) -> str:
|
| 7 |
+
"""
|
| 8 |
+
Generates a timeline diagram from JSON input.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
json_input (str): A JSON string describing the timeline structure.
|
| 12 |
+
It must follow the Expected JSON Format Example below.
|
| 13 |
+
|
| 14 |
+
Expected JSON Format Example:
|
| 15 |
+
{
|
| 16 |
+
"title": "AI Development Timeline",
|
| 17 |
+
"events": [
|
| 18 |
+
{
|
| 19 |
+
"id": "event_1",
|
| 20 |
+
"label": "Machine Learning Foundations",
|
| 21 |
+
"date": "1950-1960",
|
| 22 |
+
"description": "Early neural networks and perceptrons"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "event_2",
|
| 26 |
+
"label": "Expert Systems Era",
|
| 27 |
+
"date": "1970-1980",
|
| 28 |
+
"description": "Rule-based AI systems"
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"id": "event_3",
|
| 32 |
+
"label": "Neural Network Revival",
|
| 33 |
+
"date": "1980-1990",
|
| 34 |
+
"description": "Backpropagation algorithm"
|
| 35 |
+
}
|
| 36 |
+
]
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
str: The filepath to the generated PNG image file.
|
| 41 |
+
"""
|
| 42 |
+
try:
|
| 43 |
+
if not json_input.strip():
|
| 44 |
+
return "Error: Empty input"
|
| 45 |
+
|
| 46 |
+
data = json.loads(json_input)
|
| 47 |
+
|
| 48 |
+
if 'events' not in data:
|
| 49 |
+
raise ValueError("Missing required field: events")
|
| 50 |
+
|
| 51 |
+
dot = graphviz.Digraph(
|
| 52 |
+
name='Timeline',
|
| 53 |
+
format='png',
|
| 54 |
+
graph_attr={
|
| 55 |
+
'rankdir': 'LR', # Left-to-Right layout (horizontal timeline)
|
| 56 |
+
'splines': 'ortho', # Straight lines
|
| 57 |
+
'bgcolor': 'white', # White background
|
| 58 |
+
'pad': '0.5', # Padding around the graph
|
| 59 |
+
'nodesep': '1.0', # Spacing between nodes
|
| 60 |
+
'ranksep': '2.0' # Spacing between ranks
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
base_color = '#19191a' # Hardcoded base color
|
| 65 |
+
|
| 66 |
+
title = data.get('title', '')
|
| 67 |
+
events = data.get('events', [])
|
| 68 |
+
|
| 69 |
+
if not events:
|
| 70 |
+
raise ValueError("Timeline must contain at least one event")
|
| 71 |
+
|
| 72 |
+
# Add title node if provided
|
| 73 |
+
if title:
|
| 74 |
+
dot.node(
|
| 75 |
+
'title',
|
| 76 |
+
title,
|
| 77 |
+
shape='plaintext',
|
| 78 |
+
fontsize='18',
|
| 79 |
+
fontweight='bold',
|
| 80 |
+
fontcolor=base_color
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Add timeline events
|
| 84 |
+
previous_event_id = None
|
| 85 |
+
total_events = len(events)
|
| 86 |
+
|
| 87 |
+
for i, event in enumerate(events):
|
| 88 |
+
event_id = event.get('id', f'event_{i}')
|
| 89 |
+
event_label = event.get('label', f'Event {i+1}')
|
| 90 |
+
event_date = event.get('date', '')
|
| 91 |
+
event_description = event.get('description', '')
|
| 92 |
+
|
| 93 |
+
# Create full label with date and description
|
| 94 |
+
if event_date and event_description:
|
| 95 |
+
full_label = f"{event_date}\\n{event_label}\\n{event_description}"
|
| 96 |
+
elif event_date:
|
| 97 |
+
full_label = f"{event_date}\\n{event_label}"
|
| 98 |
+
elif event_description:
|
| 99 |
+
full_label = f"{event_label}\\n{event_description}"
|
| 100 |
+
else:
|
| 101 |
+
full_label = event_label
|
| 102 |
+
|
| 103 |
+
# Calculate color opacity based on position in timeline
|
| 104 |
+
if total_events == 1:
|
| 105 |
+
opacity = 'FF'
|
| 106 |
+
else:
|
| 107 |
+
opacity_value = int(255 * (1.0 - (i * 0.7 / (total_events - 1))))
|
| 108 |
+
opacity = format(opacity_value, '02x')
|
| 109 |
+
|
| 110 |
+
node_color = f"{base_color}{opacity}"
|
| 111 |
+
font_color = 'white' if i < total_events * 0.7 else 'black'
|
| 112 |
+
|
| 113 |
+
# Add the event node
|
| 114 |
+
dot.node(
|
| 115 |
+
event_id,
|
| 116 |
+
full_label,
|
| 117 |
+
shape='box',
|
| 118 |
+
style='filled,rounded',
|
| 119 |
+
fillcolor=node_color,
|
| 120 |
+
fontcolor=font_color,
|
| 121 |
+
fontsize='12',
|
| 122 |
+
width='2.5',
|
| 123 |
+
height='1.2'
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Connect to previous event if exists
|
| 127 |
+
if previous_event_id:
|
| 128 |
+
dot.edge(
|
| 129 |
+
previous_event_id,
|
| 130 |
+
event_id,
|
| 131 |
+
color='#666666',
|
| 132 |
+
arrowsize='0.8',
|
| 133 |
+
penwidth='2'
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Connect title to first event if title exists
|
| 137 |
+
if title and i == 0:
|
| 138 |
+
dot.edge('title', event_id, style='invis')
|
| 139 |
+
|
| 140 |
+
previous_event_id = event_id
|
| 141 |
+
|
| 142 |
+
with NamedTemporaryFile(delete=False, suffix=f'.{output_format}') as tmp:
|
| 143 |
+
dot.render(tmp.name, format=output_format, cleanup=True)
|
| 144 |
+
return f"{tmp.name}.{output_format}"
|
| 145 |
+
|
| 146 |
+
except json.JSONDecodeError:
|
| 147 |
+
return "Error: Invalid JSON format"
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return f"Error: {str(e)}"
|