|
import gradio as gr |
|
import regex as re |
|
import csv |
|
import pandas as pd |
|
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response |
|
from hf_utils import download_space_repo |
|
|
|
|
|
|
|
def read_csv_as_text(csv_filename): |
|
return pd.read_csv(csv_filename, dtype=str) |
|
|
|
def process_repo_input(text): |
|
if not text: |
|
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) |
|
|
|
repo_ids = [repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()] |
|
|
|
csv_filename = "repo_ids.csv" |
|
with open(csv_filename, mode="w", newline='', encoding="utf-8") as csvfile: |
|
writer = csv.writer(csvfile) |
|
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) |
|
for repo_id in repo_ids: |
|
writer.writerow([repo_id, "", "", "", ""]) |
|
|
|
df = read_csv_as_text(csv_filename) |
|
return df |
|
|
|
|
|
last_repo_ids = [] |
|
current_repo_idx = 0 |
|
|
|
def process_repo_input_and_store(text): |
|
global last_repo_ids, current_repo_idx |
|
if not text: |
|
last_repo_ids = [] |
|
current_repo_idx = 0 |
|
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) |
|
repo_ids = [repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()] |
|
last_repo_ids = repo_ids |
|
current_repo_idx = 0 |
|
csv_filename = "repo_ids.csv" |
|
with open(csv_filename, mode="w", newline='', encoding="utf-8") as csvfile: |
|
writer = csv.writer(csvfile) |
|
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) |
|
for repo_id in repo_ids: |
|
writer.writerow([repo_id, "", "", "", ""]) |
|
df = read_csv_as_text(csv_filename) |
|
return df |
|
|
|
def show_combined_repo_and_llm(): |
|
global current_repo_idx |
|
if not last_repo_ids: |
|
return "No repo ID available. Please submit repo IDs first.", "", pd.DataFrame() |
|
if current_repo_idx >= len(last_repo_ids): |
|
return "All repo IDs have been processed.", "", read_csv_as_text("repo_ids.csv") |
|
repo_id = last_repo_ids[current_repo_idx] |
|
try: |
|
download_space_repo(repo_id, local_dir="repo_files") |
|
except Exception as e: |
|
return f"Error downloading repo: {e}", "", read_csv_as_text("repo_ids.csv") |
|
txt_path = combine_repo_files_for_llm() |
|
try: |
|
with open(txt_path, "r", encoding="utf-8") as f: |
|
combined_content = f.read() |
|
except Exception as e: |
|
return f"Error reading {txt_path}: {e}", "", read_csv_as_text("repo_ids.csv") |
|
llm_output = analyze_combined_file(txt_path) |
|
llm_json = parse_llm_json_response(llm_output) |
|
|
|
csv_filename = "repo_ids.csv" |
|
extraction_status = "" |
|
strengths = "" |
|
weaknesses = "" |
|
try: |
|
df = read_csv_as_text(csv_filename) |
|
for col in ["strength", "weaknesses", "speciality", "relevance rating"]: |
|
df[col] = df[col].astype(str) |
|
for idx, row in df.iterrows(): |
|
if row["repo id"] == repo_id: |
|
if isinstance(llm_json, dict) and "error" not in llm_json: |
|
extraction_status = "JSON extraction: SUCCESS" |
|
strengths = llm_json.get("strength", "") |
|
weaknesses = llm_json.get("weaknesses", "") |
|
df.at[idx, "strength"] = strengths |
|
df.at[idx, "weaknesses"] = weaknesses |
|
df.at[idx, "speciality"] = llm_json.get("speciality", "") |
|
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "") |
|
else: |
|
extraction_status = f"JSON extraction: FAILED\nRaw: {llm_json.get('raw', '') if isinstance(llm_json, dict) else llm_json}" |
|
break |
|
df.to_csv(csv_filename, index=False) |
|
except Exception as e: |
|
df = read_csv_as_text(csv_filename) |
|
extraction_status = f"CSV update error: {e}" |
|
|
|
current_repo_idx += 1 |
|
summary = f"{extraction_status}\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}" |
|
return combined_content, summary, df |
|
|
|
repo_id_input = gr.Textbox(label="Enter repo IDs (comma or newline separated)", lines=5, placeholder="repo1, repo2\nrepo3") |
|
df_output = gr.Dataframe(headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating", "Usecase"]) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Repo ID Input") |
|
repo_id_box = repo_id_input.render() |
|
df_box = df_output.render() |
|
submit_btn = gr.Button("Submit Repo IDs") |
|
submit_btn.click(process_repo_input_and_store, inputs=repo_id_box, outputs=df_box) |
|
|
|
gr.Markdown("---") |
|
gr.Markdown("## Combine and Display Repo Files") |
|
combine_btn = gr.Button("Download, Combine & Show .py/.md Files from Next Repo and Analyze") |
|
combined_txt = gr.Textbox(label="Combined Repo Files", lines=20) |
|
llm_output_txt = gr.Textbox(label="LLM Analysis Output", lines=10) |
|
df_display = gr.Dataframe( |
|
headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating", "Usecase"] |
|
) |
|
combine_btn.click(show_combined_repo_and_llm, inputs=None, outputs=[combined_txt, llm_output_txt, df_display]) |
|
|
|
demo.launch() |