HF_RepoSense / app.py
naman1102's picture
Update app.py
d4ec8a0
raw
history blame
15.7 kB
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import List, Dict, Tuple, Any
import logging
import os
# Import core logic from other modules, as in app_old.py
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
from hf_utils import download_space_repo, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
CSV_FILE = "repo_ids.csv"
CHATBOT_SYSTEM_PROMPT = (
"You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
"Ask questions to clarify what they want, their use case, preferred language, features, etc. "
"When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
"Return only the keywords as a comma-separated list."
)
CHATBOT_INITIAL_MESSAGE = "Hello! Please tell me about your ideal Hugging Face repo. What use case, preferred language, or features are you looking for?"
# --- Helper Functions (Logic) ---
def write_repos_to_csv(repo_ids: List[str]) -> None:
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
try:
with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
for repo_id in repo_ids:
writer.writerow([repo_id, "", "", "", ""])
logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
except Exception as e:
logger.error(f"Error writing to CSV: {e}")
def read_csv_to_dataframe() -> pd.DataFrame:
"""Reads the CSV file into a pandas DataFrame."""
try:
return pd.read_csv(CSV_FILE, dtype=str).fillna('')
except FileNotFoundError:
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
except Exception as e:
logger.error(f"Error reading CSV: {e}")
return pd.DataFrame()
def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame]:
"""
Downloads, analyzes a single repo, updates the CSV, and returns results.
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
"""
try:
logger.info(f"Starting analysis for repo: {repo_id}")
download_space_repo(repo_id, local_dir="repo_files")
txt_path = combine_repo_files_for_llm()
with open(txt_path, "r", encoding="utf-8") as f:
combined_content = f.read()
llm_output = analyze_combined_file(txt_path)
last_start = llm_output.rfind('{')
last_end = llm_output.rfind('}')
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
llm_json = parse_llm_json_response(final_json_str)
summary = ""
if isinstance(llm_json, dict) and "error" not in llm_json:
strengths = llm_json.get("strength", "N/A")
weaknesses = llm_json.get("weaknesses", "N/A")
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}"
else:
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
# Update CSV
df = read_csv_to_dataframe()
repo_found_in_df = False
for idx, row in df.iterrows():
if row["repo id"] == repo_id:
if isinstance(llm_json, dict):
df.at[idx, "strength"] = llm_json.get("strength", "")
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
df.at[idx, "speciality"] = llm_json.get("speciality", "")
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
repo_found_in_df = True
break
if not repo_found_in_df:
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
df.to_csv(CSV_FILE, index=False)
logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
return combined_content, summary, df
except Exception as e:
logger.error(f"An error occurred during analysis of {repo_id}: {e}")
error_summary = f"Error analyzing repo: {e}"
return "", error_summary, read_csv_to_dataframe()
# --- NEW: Helper for Chat History Conversion ---
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
"""Converts Gradio's 'messages' format to the old 'tuple' format for compatibility."""
tuple_history = []
# Assumes a strict user-assistant-user-assistant turn structure.
for i in range(0, len(history), 2):
if i + 1 < len(history) and history[i]['role'] == 'user' and history[i+1]['role'] == 'assistant':
tuple_history.append((history[i]['content'], history[i+1]['content']))
return tuple_history
# --- Gradio UI ---
def create_ui() -> gr.Blocks:
"""Creates and configures the entire Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Repo Analyzer") as app:
# --- State Management ---
# Using simple, separate state objects for robustness.
repo_ids_state = gr.State([])
current_repo_idx_state = gr.State(0)
gr.Markdown("# Hugging Face Repository Analyzer")
with gr.Tabs() as tabs:
# --- Input Tab ---
with gr.TabItem("1. Input Repositories", id="input_tab"):
with gr.Row():
with gr.Column():
gr.Markdown("## Enter Repository IDs")
repo_id_input = gr.Textbox(
label="Enter repo IDs (comma or newline separated)",
lines=8,
placeholder="org/repo1, org/repo2"
)
submit_repo_btn = gr.Button("Submit Repository IDs", variant="primary")
with gr.Column():
gr.Markdown("## Or Search by Keywords")
keyword_input = gr.Textbox(
label="Enter keywords to search",
lines=8,
placeholder="e.g., text generation, image classification"
)
search_btn = gr.Button("Search by Keywords", variant="primary")
status_box_input = gr.Textbox(label="Status", interactive=False)
# --- Analysis Tab ---
with gr.TabItem("2. Analyze Repositories", id="analysis_tab"):
gr.Markdown("## Repository Analysis")
analyze_next_btn = gr.Button("Analyze Next Repository", variant="primary")
status_box_analysis = gr.Textbox(label="Status", interactive=False)
with gr.Row():
content_output = gr.Textbox(label="Repository Content", lines=20)
summary_output = gr.Textbox(label="Analysis Summary", lines=20)
gr.Markdown("### Analysis Results Table")
df_output = gr.Dataframe(headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
# --- Chatbot Tab ---
with gr.TabItem("3. Find Repos with AI", id="chatbot_tab"):
gr.Markdown("## Chat with an Assistant to Find Repositories")
chatbot = gr.Chatbot(
value=[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
label="Chat with Assistant",
height=400,
type="messages"
)
msg_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
end_chat_btn = gr.Button("End Chat & Get Keywords")
gr.Markdown("### Extracted Keywords")
extracted_keywords_output = gr.Textbox(label="Keywords", interactive=False)
use_keywords_btn = gr.Button("Use These Keywords to Search", variant="primary")
status_box_chatbot = gr.Textbox(label="Status", interactive=False)
# --- Event Handler Functions ---
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
"""Processes submitted repo IDs, updates state, and prepares for analysis."""
if not text:
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
write_repos_to_csv(repo_ids)
df = read_csv_to_dataframe()
status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
return repo_ids, 0, df, status, gr.update(selected="analysis_tab")
def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
"""Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
if not keywords:
return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
repo_ids = []
for kw in keyword_list:
repo_ids.extend(search_top_spaces(kw, limit=5))
unique_repo_ids = list(dict.fromkeys(repo_ids))
write_repos_to_csv(unique_repo_ids)
df = read_csv_to_dataframe()
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
def handle_analyze_next(repo_ids: List[str], current_idx: int) -> Tuple[str, str, pd.DataFrame, int, str]:
"""Analyzes the next repository in the list."""
if not repo_ids:
return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
if current_idx >= len(repo_ids):
return "", "", read_csv_to_dataframe(), current_idx, "Status: All repositories have been analyzed."
repo_id_to_analyze = repo_ids[current_idx]
status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze)
next_idx = current_idx + 1
if next_idx >= len(repo_ids):
status += "\n\nFinished all analyses."
return content, summary, df, next_idx, status
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
"""Appends the user's message to the history, preparing for the bot's response."""
if user_message:
history.append({"role": "user", "content": user_message})
return history, ""
def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Generates and appends the bot's response using the compatible history format."""
if not history or history[-1]["role"] != "user":
return history
user_message = history[-1]["content"]
# Convert all messages *before* the last user message into tuples for the API
tuple_history_for_api = convert_messages_to_tuples(history[:-1])
response = chat_with_user(user_message, tuple_history_for_api)
history.append({"role": "assistant", "content": response})
return history
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str]:
"""Ends the chat, extracts and sanitizes keywords from the conversation."""
if not history:
return "", "Status: Chat is empty, nothing to analyze."
# Convert the full, valid history for the extraction logic
tuple_history = convert_messages_to_tuples(history)
if not tuple_history:
return "", "Status: No completed conversations to analyze."
# Get raw keywords string from the LLM
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
# Sanitize the LLM output to extract only keyword-like parts.
# A keyword can contain letters, numbers, underscores, spaces, and hyphens.
cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
# Trim whitespace from each found keyword and filter out any empty strings
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
if not cleaned_keywords:
return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'"
# Join them into a clean, comma-separated string for the search tool
final_keywords_str = ", ".join(cleaned_keywords)
status = "Status: Keywords extracted. You can now use them to search."
return final_keywords_str, status
# --- Component Event Wiring ---
# Input Tab
submit_repo_btn.click(
fn=handle_repo_id_submission,
inputs=[repo_id_input],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
search_btn.click(
fn=handle_keyword_search,
inputs=[keyword_input],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
# Analysis Tab
analyze_next_btn.click(
fn=handle_analyze_next,
inputs=[repo_ids_state, current_repo_idx_state],
outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
)
# Chatbot Tab
msg_input.submit(
fn=handle_user_message,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
).then(
fn=handle_bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
send_btn.click(
fn=handle_user_message,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
).then(
fn=handle_bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
end_chat_btn.click(
fn=handle_end_chat,
inputs=[chatbot],
outputs=[extracted_keywords_output, status_box_chatbot]
)
use_keywords_btn.click(
fn=handle_keyword_search,
inputs=[extracted_keywords_output],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
return app
if __name__ == "__main__":
app = create_ui()
app.launch(debug=True)