Spaces:
Sleeping
Sleeping
import openai | |
import os | |
import json | |
def analyze_code(code: str) -> str: | |
""" | |
Uses OpenAI's GPT-4.1 mini model to analyze the given code. | |
Returns the analysis as a string. | |
""" | |
from openai import OpenAI | |
client = OpenAI() | |
system_prompt = ( | |
"You are a helpful assistant. Analyze the code given to you. " | |
"Return your response strictly in JSON format with the following keys: " | |
"'strength', 'weaknesses', 'speciality', 'relevance rating'. " | |
"Do not include any other text outside the JSON." | |
"the reply should just be the following format:" | |
"{" | |
" 'strength': '...', " | |
" 'weaknesses': '...', " | |
" 'speciality': '...', " | |
" 'relevance rating': '...'" | |
"}" | |
) | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", # GPT-4.1 mini | |
messages=[ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": code} | |
], | |
max_tokens=512, | |
temperature=0.7 | |
) | |
return response.choices[0].message.content | |
def parse_llm_json_response(response: str): | |
try: | |
return json.loads(response) | |
except Exception as e: | |
return {"error": f"Failed to parse JSON: {e}", "raw": response} | |
def combine_repo_files_for_llm(repo_dir="repo_files", output_file="combined_repo.txt"): | |
""" | |
Combines all .py and .md files in the given directory (recursively) into a single text file. | |
Returns the path to the combined file. | |
""" | |
combined_content = [] | |
seen_files = set() | |
# Priority files | |
priority_files = ["app.py", "README.md"] | |
for pf in priority_files: | |
pf_path = os.path.join(repo_dir, pf) | |
if os.path.isfile(pf_path): | |
try: | |
with open(pf_path, "r", encoding="utf-8") as f: | |
combined_content.append(f"\n# ===== File: {pf} =====\n") | |
combined_content.append(f.read()) | |
seen_files.add(os.path.abspath(pf_path)) | |
except Exception as e: | |
combined_content.append(f"\n# Could not read {pf_path}: {e}\n") | |
# All other .py and .md files | |
for root, _, files in os.walk(repo_dir): | |
for file in files: | |
if file.endswith(".py") or file.endswith(".md"): | |
file_path = os.path.join(root, file) | |
abs_path = os.path.abspath(file_path) | |
if abs_path in seen_files: | |
continue | |
try: | |
with open(file_path, "r", encoding="utf-8") as f: | |
combined_content.append(f"\n# ===== File: {file} =====\n") | |
combined_content.append(f.read()) | |
seen_files.add(abs_path) | |
except Exception as e: | |
combined_content.append(f"\n# Could not read {file_path}: {e}\n") | |
with open(output_file, "w", encoding="utf-8") as out_f: | |
out_f.write("\n".join(combined_content)) | |
return output_file | |
def analyze_combined_file(output_file="combined_repo.txt"): | |
""" | |
Reads the combined file and passes its contents to analyze_code, returning the LLM's output. | |
""" | |
try: | |
with open(output_file, "r", encoding="utf-8") as f: | |
lines = f.readlines() | |
code = "".join(lines[:500]) | |
return analyze_code(code) | |
except Exception as e: | |
return f"Error analyzing combined file: {e}" | |