|
import openai |
|
import os |
|
import json |
|
import re |
|
|
|
def analyze_code(code: str) -> str: |
|
""" |
|
Uses qwen2.5-coder-7b-instruct-awq model to analyze the given code. |
|
Returns the analysis as a string. |
|
""" |
|
from openai import OpenAI |
|
client = OpenAI(api_key=os.getenv("modal_api")) |
|
client.base_url = os.getenv("base_url") |
|
system_prompt = ( |
|
"You are a highly precise and strict JSON generator. Analyze the code given to you. " |
|
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. " |
|
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. " |
|
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. " |
|
"If you cannot answer, still return a valid JSON with empty strings for each key. " |
|
"Example of the ONLY valid output:\n" |
|
"{\n 'strength': '...', \n 'weaknesses': '...', \n 'speciality': '...', \n 'relevance rating': 'high'\n}" |
|
) |
|
response = client.chat.completions.create( |
|
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": code} |
|
], |
|
max_tokens=512, |
|
temperature=0.4 |
|
) |
|
return response.choices[0].message.content |
|
|
|
def parse_llm_json_response(response: str): |
|
try: |
|
print("DEBUGGGGG ::: ", response) |
|
|
|
|
|
start = response.find('{') |
|
end = response.rfind('}') |
|
if start == -1 or end == -1 or end < start: |
|
raise ValueError("No valid JSON object found in the response.") |
|
json_str = response[start:end+1] |
|
|
|
|
|
|
|
json_str = re.sub(r"'", '"', json_str) |
|
|
|
|
|
|
|
def escape_inner_quotes(match): |
|
|
|
|
|
|
|
|
|
|
|
inner_content = match.group(1) |
|
placeholder = "___TEMP_QUOTE___" |
|
inner_content = inner_content.replace('\\"', placeholder) |
|
inner_content = inner_content.replace('"', '\\"') |
|
inner_content = inner_content.replace(placeholder, '\\"') |
|
return f'"{inner_content}"' |
|
|
|
|
|
|
|
json_str = re.sub(r'"(.*?)"', escape_inner_quotes, json_str) |
|
|
|
return json.loads(json_str) |
|
|
|
except Exception as e: |
|
print("DEBUGGGGG error ::: ", e) |
|
return {"error": f"Failed to parse JSON: {e}", "raw": response} |
|
|
|
def combine_repo_files_for_llm(repo_dir="repo_files", output_file="combined_repo.txt"): |
|
""" |
|
Combines all .py and .md files in the given directory (recursively) into a single text file. |
|
Returns the path to the combined file. |
|
""" |
|
combined_content = [] |
|
seen_files = set() |
|
|
|
priority_files = ["app.py", "README.md"] |
|
for pf in priority_files: |
|
pf_path = os.path.join(repo_dir, pf) |
|
if os.path.isfile(pf_path): |
|
try: |
|
with open(pf_path, "r", encoding="utf-8") as f: |
|
combined_content.append(f"\n# ===== File: {pf} =====\n") |
|
combined_content.append(f.read()) |
|
seen_files.add(os.path.abspath(pf_path)) |
|
except Exception as e: |
|
combined_content.append(f"\n# Could not read {pf_path}: {e}\n") |
|
|
|
for root, _, files in os.walk(repo_dir): |
|
for file in files: |
|
if file.endswith(".py") or file.endswith(".md"): |
|
file_path = os.path.join(root, file) |
|
abs_path = os.path.abspath(file_path) |
|
if abs_path in seen_files: |
|
continue |
|
try: |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
combined_content.append(f"\n# ===== File: {file} =====\n") |
|
combined_content.append(f.read()) |
|
seen_files.add(abs_path) |
|
except Exception as e: |
|
combined_content.append(f"\n# Could not read {file_path}: {e}\n") |
|
with open(output_file, "w", encoding="utf-8") as out_f: |
|
out_f.write("\n".join(combined_content)) |
|
return output_file |
|
|
|
def analyze_code_chunk(code: str, user_requirements: str = "") -> str: |
|
""" |
|
Analyzes a code chunk and returns a JSON summary for that chunk. |
|
""" |
|
from openai import OpenAI |
|
client = OpenAI(api_key=os.getenv("modal_api")) |
|
client.base_url = os.getenv("base_url") |
|
|
|
|
|
requirements_section = "" |
|
if user_requirements.strip(): |
|
requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen rating relevance, consider how well this code matches the user's stated requirements." |
|
|
|
chunk_prompt = ( |
|
"You are a highly precise and strict JSON generator. Analyze the following code chunk. " |
|
"Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. " |
|
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. " |
|
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. " |
|
"Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. " |
|
"If you cannot answer, still return a valid JSON with empty strings for each key. " |
|
f"{requirements_section}" |
|
"Example of the ONLY valid output:\n" |
|
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "high"\n}' |
|
) |
|
|
|
response = client.chat.completions.create( |
|
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", |
|
messages=[ |
|
{"role": "system", "content": chunk_prompt}, |
|
{"role": "user", "content": code} |
|
], |
|
|
|
temperature=0.4 |
|
) |
|
return response.choices[0].message.content |
|
|
|
def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") -> str: |
|
""" |
|
Aggregates a list of chunk JSONs into a single JSON summary using the LLM. |
|
""" |
|
from openai import OpenAI |
|
client = OpenAI(api_key=os.getenv("modal_api")) |
|
client.base_url = os.getenv("base_url") |
|
|
|
|
|
requirements_section = "" |
|
if user_requirements.strip(): |
|
requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen aggregating the relevance rating, consider how well the overall repository matches the user's stated requirements." |
|
|
|
aggregation_prompt = ( |
|
"You are a highly precise and strict, code analyzer and JSON generator. You are given a list of JSON analyses of code chunks. " |
|
"Aggregate these into a SINGLE overall JSON summary with the same keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. " |
|
"All property names and string values MUST use double quotes (\"). Do NOT use single quotes. " |
|
"For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. " |
|
"Summarize and combine the information from all chunks. Do NOT include any explanation, markdown, or text outside the JSON. " |
|
"If a key is missing in all chunks, use an empty string. " |
|
f"{requirements_section}" |
|
"Example of the ONLY valid output:\n" |
|
'{\n "strength": "...", \n "weaknesses": "...", \n "speciality": "...", \n "relevance rating": "high"\n}' |
|
) |
|
user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons) |
|
response = client.chat.completions.create( |
|
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", |
|
messages=[ |
|
{"role": "system", "content": aggregation_prompt}, |
|
{"role": "user", "content": user_content} |
|
], |
|
max_tokens=512, |
|
temperature=0.3 |
|
) |
|
return response.choices[0].message.content |
|
|
|
def analyze_combined_file(output_file="combined_repo.txt", user_requirements: str = ""): |
|
""" |
|
Reads the combined file, splits it into 500-line chunks, analyzes each chunk, and aggregates the LLM's output into a final summary. |
|
Now includes user requirements for better relevance rating. |
|
Returns the chunk JSONs (for debugging) and the aggregated analysis as a string. |
|
""" |
|
try: |
|
with open(output_file, "r", encoding="utf-8") as f: |
|
lines = f.readlines() |
|
chunk_size = 1200 |
|
chunk_jsons = [] |
|
for i in range(0, len(lines), chunk_size): |
|
chunk = "".join(lines[i:i+chunk_size]) |
|
analysis = analyze_code_chunk(chunk, user_requirements) |
|
chunk_jsons.append(analysis) |
|
final_summary = aggregate_chunk_analyses(chunk_jsons, user_requirements) |
|
debug_output = ( |
|
"==== Chunk JSON Outputs ====" |
|
+ "\n\n".join([f"Chunk {i+1} JSON:\n{chunk_jsons[i]}" for i in range(len(chunk_jsons))]) |
|
+ "\n\n==== Final Aggregated Summary ====" |
|
+ f"\n{final_summary}" |
|
) |
|
return debug_output |
|
except Exception as e: |
|
return f"Error analyzing combined file: {e}" |
|
|