abstraction
Browse files- app.py +230 -326
- old_app2.py +1253 -0
app.py
CHANGED
@@ -29,13 +29,47 @@ CHATBOT_SYSTEM_PROMPT = (
|
|
29 |
"Your role is to ask clarifying questions to understand exactly what the user is looking for. "
|
30 |
"Ask about their use case, preferred programming language, specific features needed, project type, etc. "
|
31 |
"When you feel you have gathered enough detailed information about their requirements, "
|
32 |
-
"tell the user: 'I think I have enough information about your requirements.
|
33 |
"Focus on understanding their needs, not providing solutions."
|
34 |
)
|
35 |
-
CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you
|
36 |
|
37 |
# --- Helper Functions (Logic) ---
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
|
40 |
"""
|
41 |
Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
|
@@ -580,82 +614,54 @@ def create_ui() -> gr.Blocks:
|
|
580 |
|
581 |
with gr.Tabs() as tabs:
|
582 |
# --- Input Tab ---
|
583 |
-
with gr.TabItem("📝
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
info="Enter keywords to find relevant repositories"
|
602 |
-
)
|
603 |
-
search_btn = gr.Button("🔎 Search Repositories", variant="primary", size="lg")
|
604 |
|
605 |
status_box_input = gr.Textbox(label="📊 Status", interactive=False, lines=2)
|
606 |
|
607 |
# --- Analysis Tab ---
|
608 |
-
with gr.TabItem("🔬 Analysis", id="analysis_tab"):
|
609 |
-
gr.Markdown("### 🧪 Repository Analysis
|
610 |
|
611 |
# Display current user requirements
|
612 |
with gr.Row():
|
613 |
current_requirements_display = gr.Textbox(
|
614 |
-
label="📋
|
615 |
interactive=False,
|
616 |
-
lines=
|
617 |
-
info="Requirements
|
618 |
)
|
619 |
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
|
625 |
# Progress bar for batch analysis
|
626 |
-
|
627 |
-
analysis_progress = gr.Progress()
|
628 |
-
# progress_display = gr.Textbox(
|
629 |
-
# label="📊 Batch Analysis Progress",
|
630 |
-
# interactive=False,
|
631 |
-
# lines=2,
|
632 |
-
# visible=False,
|
633 |
-
# info="Shows progress when analyzing all repositories"
|
634 |
-
# )
|
635 |
-
|
636 |
-
with gr.Row(equal_height=True):
|
637 |
-
# with gr.Column():
|
638 |
-
# content_output = gr.Textbox(
|
639 |
-
# label="📄 Repository Content",
|
640 |
-
# lines=20,
|
641 |
-
# show_copy_button=True,
|
642 |
-
# info="Raw content extracted from the repository"
|
643 |
-
# )
|
644 |
-
# with gr.Column():
|
645 |
-
# summary_output = gr.Textbox(
|
646 |
-
# label="🎯 AI Analysis Summary",
|
647 |
-
# lines=20,
|
648 |
-
# show_copy_button=True,
|
649 |
-
# info="Detailed analysis and insights from AI"
|
650 |
-
# )
|
651 |
-
pass
|
652 |
|
653 |
gr.Markdown("### 📊 Results Dashboard")
|
654 |
|
655 |
# Top 3 Most Relevant Repositories (initially hidden)
|
656 |
with gr.Column(visible=False) as top_repos_section:
|
657 |
gr.Markdown("### 🏆 Top 3 Most Relevant Repositories")
|
658 |
-
gr.Markdown("🎯 **
|
659 |
top_repos_df = gr.Dataframe(
|
660 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
661 |
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
@@ -663,45 +669,8 @@ def create_ui() -> gr.Blocks:
|
|
663 |
interactive=False
|
664 |
)
|
665 |
|
666 |
-
gr.Markdown("💡 **Tip:** Full text is displayed directly in the table. Click on repository names to explore or visit them!")
|
667 |
-
|
668 |
-
# Text expansion modal for showing full content (kept for backwards compatibility)
|
669 |
-
with gr.Row():
|
670 |
-
with gr.Column():
|
671 |
-
text_expansion_modal = gr.Column(visible=False)
|
672 |
-
with text_expansion_modal:
|
673 |
-
gr.Markdown("### 📄 Full Content View")
|
674 |
-
expanded_content_title = gr.Textbox(
|
675 |
-
label="Content Type",
|
676 |
-
interactive=False,
|
677 |
-
info="Full text content for the selected field"
|
678 |
-
)
|
679 |
-
expanded_content_text = gr.Textbox(
|
680 |
-
label="Full Text",
|
681 |
-
lines=10,
|
682 |
-
interactive=False,
|
683 |
-
show_copy_button=True,
|
684 |
-
info="Complete untruncated content"
|
685 |
-
)
|
686 |
-
close_text_modal_btn = gr.Button("❌ Close", size="lg")
|
687 |
-
|
688 |
-
# Modal popup for repository action selection
|
689 |
-
with gr.Row():
|
690 |
-
with gr.Column():
|
691 |
-
repo_action_modal = gr.Column(visible=False)
|
692 |
-
with repo_action_modal:
|
693 |
-
gr.Markdown("### 🔗 Repository Actions")
|
694 |
-
selected_repo_display = gr.Textbox(
|
695 |
-
label="Selected Repository",
|
696 |
-
interactive=False,
|
697 |
-
info="Choose what you'd like to do with this repository"
|
698 |
-
)
|
699 |
-
with gr.Row():
|
700 |
-
visit_repo_btn = gr.Button("🌐 Visit Hugging Face Space", variant="primary", size="lg")
|
701 |
-
explore_repo_btn = gr.Button("🔍 Open in Repo Explorer", variant="secondary", size="lg")
|
702 |
-
cancel_modal_btn = gr.Button("❌ Cancel", size="lg")
|
703 |
-
|
704 |
gr.Markdown("### 📋 All Analysis Results")
|
|
|
705 |
df_output = gr.Dataframe(
|
706 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
707 |
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
@@ -711,11 +680,12 @@ def create_ui() -> gr.Blocks:
|
|
711 |
|
712 |
# --- Chatbot Tab ---
|
713 |
with gr.TabItem("🤖 AI Assistant", id="chatbot_tab"):
|
714 |
-
gr.Markdown("### 💬 Intelligent Repository Discovery")
|
|
|
715 |
|
716 |
chatbot = gr.Chatbot(
|
717 |
label="🤖 AI Assistant",
|
718 |
-
height=
|
719 |
type="messages",
|
720 |
avatar_images=(
|
721 |
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
@@ -727,28 +697,28 @@ def create_ui() -> gr.Blocks:
|
|
727 |
with gr.Row():
|
728 |
msg_input = gr.Textbox(
|
729 |
label="💭 Your Message",
|
730 |
-
placeholder="Tell me about your
|
731 |
lines=1,
|
732 |
-
scale=
|
733 |
-
info="Describe what you're
|
734 |
)
|
735 |
-
send_btn = gr.Button("📤
|
736 |
-
end_chat_btn = gr.Button("🎯 Extract Keywords", scale=1)
|
737 |
-
use_keywords_btn = gr.Button("🔎 Search Now", variant="primary", scale=1)
|
738 |
|
|
|
739 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
740 |
with gr.Column():
|
741 |
extracted_keywords_output = gr.Textbox(
|
742 |
-
label="🏷️ Extracted Keywords",
|
743 |
interactive=False,
|
744 |
show_copy_button=True,
|
745 |
-
info="
|
746 |
-
)
|
747 |
-
with gr.Column():
|
748 |
-
status_box_chatbot = gr.Textbox(
|
749 |
-
label="📊 Chat Status",
|
750 |
-
interactive=False,
|
751 |
-
info="Current conversation status"
|
752 |
)
|
753 |
|
754 |
# --- Repo Explorer Tab ---
|
@@ -770,49 +740,47 @@ def create_ui() -> gr.Blocks:
|
|
770 |
|
771 |
# --- Event Handler Functions ---
|
772 |
|
773 |
-
def
|
774 |
-
"""
|
775 |
-
if not text:
|
776 |
-
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
|
777 |
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
|
800 |
-
def
|
801 |
-
"""
|
802 |
-
|
803 |
-
return ""
|
804 |
-
|
805 |
-
user_messages = []
|
806 |
-
for msg in history:
|
807 |
-
if msg.get('role') == 'user':
|
808 |
-
user_messages.append(msg.get('content', ''))
|
809 |
-
|
810 |
-
if not user_messages:
|
811 |
-
return ""
|
812 |
-
|
813 |
-
# Combine all user messages as requirements
|
814 |
-
requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
|
815 |
-
return requirements
|
816 |
|
817 |
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
|
818 |
"""Appends the user's message to the history, preparing for the bot's response."""
|
@@ -824,10 +792,10 @@ def create_ui() -> gr.Blocks:
|
|
824 |
history.append({"role": "user", "content": user_message})
|
825 |
return history, ""
|
826 |
|
827 |
-
def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
828 |
-
"""Generates
|
829 |
if not history or history[-1]["role"] != "user":
|
830 |
-
return history
|
831 |
|
832 |
user_message = history[-1]["content"]
|
833 |
# Convert all messages *before* the last user message into tuples for the API
|
@@ -835,79 +803,76 @@ def create_ui() -> gr.Blocks:
|
|
835 |
|
836 |
response = chat_with_user(user_message, tuple_history_for_api)
|
837 |
history.append({"role": "assistant", "content": response})
|
838 |
-
return history
|
839 |
-
|
840 |
-
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
|
841 |
-
"""Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
|
842 |
-
if not history:
|
843 |
-
return "", "Status: Chat is empty, nothing to analyze.", ""
|
844 |
|
845 |
-
#
|
846 |
-
|
847 |
-
|
848 |
-
|
|
|
849 |
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
|
|
868 |
|
869 |
-
|
870 |
-
return final_keywords_str, status, user_requirements
|
871 |
|
872 |
-
def
|
873 |
-
"""Handle
|
874 |
-
print(f"DEBUG: Selection event triggered!")
|
875 |
-
print(f"DEBUG: evt = {evt}")
|
876 |
-
print(f"DEBUG: df_data type = {type(df_data)}")
|
877 |
-
|
878 |
if evt is None:
|
879 |
-
return ""
|
880 |
|
881 |
try:
|
882 |
-
# Get the selected row and column from the event
|
883 |
row_idx = evt.index[0]
|
884 |
col_idx = evt.index[1]
|
885 |
-
print(f"DEBUG: Selected row {row_idx}, column {col_idx}")
|
886 |
|
887 |
-
#
|
888 |
-
if isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data):
|
|
|
889 |
|
890 |
-
if
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan':
|
895 |
-
clean_repo_id = str(repo_id).strip()
|
896 |
-
logger.info(f"Showing modal for repository: {clean_repo_id}")
|
897 |
-
return clean_repo_id, gr.update(visible=True), gr.update(), "", "", gr.update(visible=False), clean_repo_id
|
898 |
-
|
899 |
-
# For content columns (1,2,3) and relevance (4), do nothing since full text is shown directly
|
900 |
-
else:
|
901 |
-
print(f"DEBUG: Clicked on column {col_idx}, full text already shown in table")
|
902 |
-
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
903 |
-
else:
|
904 |
-
print(f"DEBUG: df_data is not a DataFrame or row_idx {row_idx} out of range")
|
905 |
-
|
906 |
except Exception as e:
|
907 |
-
|
908 |
-
logger.error(f"Error handling dataframe selection: {e}")
|
909 |
|
910 |
-
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
911 |
|
912 |
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
|
913 |
"""Analyzes all repositories in the CSV file with progress tracking."""
|
@@ -1029,43 +994,7 @@ def create_ui() -> gr.Blocks:
|
|
1029 |
error_status = f"❌ Batch analysis failed: {e}"
|
1030 |
return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False)
|
1031 |
|
1032 |
-
def
|
1033 |
-
"""Handle visiting the Hugging Face Space for the repository."""
|
1034 |
-
if repo_id and repo_id.strip():
|
1035 |
-
hf_url = f"https://huggingface.co/spaces/{repo_id.strip()}"
|
1036 |
-
logger.info(f"User chose to visit: {hf_url}")
|
1037 |
-
return gr.update(visible=False), hf_url
|
1038 |
-
return gr.update(visible=False), ""
|
1039 |
-
|
1040 |
-
def handle_explore_repo(selected_repo_id: str) -> Tuple[Any, Any, Any]:
|
1041 |
-
"""Handle navigating to the repo explorer and populate the repo ID."""
|
1042 |
-
logger.info(f"DEBUG: handle_explore_repo called with selected_repo_id: '{selected_repo_id}'")
|
1043 |
-
logger.info(f"DEBUG: selected_repo_id type: {type(selected_repo_id)}")
|
1044 |
-
logger.info(f"DEBUG: selected_repo_id length: {len(selected_repo_id) if selected_repo_id else 'None'}")
|
1045 |
-
|
1046 |
-
if selected_repo_id and selected_repo_id.strip() and selected_repo_id.strip() != 'nan':
|
1047 |
-
clean_repo_id = selected_repo_id.strip()
|
1048 |
-
return (
|
1049 |
-
gr.update(visible=False), # close modal
|
1050 |
-
gr.update(selected="repo_explorer_tab"), # switch tab
|
1051 |
-
gr.update(value=clean_repo_id) # populate repo explorer input
|
1052 |
-
)
|
1053 |
-
else:
|
1054 |
-
return (
|
1055 |
-
gr.update(visible=False), # close modal
|
1056 |
-
gr.update(selected="repo_explorer_tab"), # switch tab
|
1057 |
-
gr.update() # don't change repo explorer input
|
1058 |
-
)
|
1059 |
-
|
1060 |
-
def handle_cancel_modal() -> Any:
|
1061 |
-
"""Handle closing the modal."""
|
1062 |
-
return gr.update(visible=False)
|
1063 |
-
|
1064 |
-
def handle_close_text_modal() -> Any:
|
1065 |
-
"""Handle closing the text expansion modal."""
|
1066 |
-
return gr.update(visible=False)
|
1067 |
-
|
1068 |
-
def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, Any, Any, List[Dict[str, str]], str, str, str]:
|
1069 |
"""Reset everything to initial state - clear all data, CSV, and UI components."""
|
1070 |
try:
|
1071 |
# Clear the CSV file
|
@@ -1100,10 +1029,8 @@ def create_ui() -> gr.Blocks:
|
|
1100 |
empty_df, # df_output
|
1101 |
empty_df, # top_repos_df
|
1102 |
gr.update(visible=False), # top_repos_section
|
1103 |
-
gr.update(visible=False), # repo_action_modal
|
1104 |
-
gr.update(visible=False), # text_expansion_modal
|
1105 |
chatbot_reset, # chatbot
|
1106 |
-
status_reset, #
|
1107 |
current_requirements_reset, # current_requirements_display
|
1108 |
extracted_keywords_reset # extracted_keywords_output
|
1109 |
)
|
@@ -1118,10 +1045,8 @@ def create_ui() -> gr.Blocks:
|
|
1118 |
pd.DataFrame(), # df_output
|
1119 |
pd.DataFrame(), # top_repos_df
|
1120 |
gr.update(visible=False), # top_repos_section
|
1121 |
-
gr.update(visible=False), # repo_action_modal
|
1122 |
-
gr.update(visible=False), # text_expansion_modal
|
1123 |
[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot
|
1124 |
-
error_status, #
|
1125 |
"No requirements extracted yet.", # current_requirements_display
|
1126 |
"" # extracted_keywords_output
|
1127 |
)
|
@@ -1134,29 +1059,33 @@ def create_ui() -> gr.Blocks:
|
|
1134 |
outputs=[chatbot]
|
1135 |
)
|
1136 |
|
1137 |
-
# Input
|
1138 |
-
|
1139 |
-
fn=
|
1140 |
-
inputs=[
|
1141 |
-
outputs=[repo_ids_state, current_repo_idx_state, df_output,
|
|
|
|
|
|
|
|
|
|
|
1142 |
)
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
|
|
|
|
1147 |
)
|
1148 |
|
1149 |
-
#
|
1150 |
analyze_all_btn.click(
|
1151 |
-
fn=lambda: None, # No need to show progress display since it's commented out
|
1152 |
-
outputs=[]
|
1153 |
-
).then(
|
1154 |
fn=handle_analyze_all_repos,
|
1155 |
inputs=[repo_ids_state, user_requirements_state],
|
1156 |
outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
|
1157 |
)
|
1158 |
|
1159 |
-
# Chatbot
|
1160 |
msg_input.submit(
|
1161 |
fn=handle_user_message,
|
1162 |
inputs=[msg_input, chatbot],
|
@@ -1164,8 +1093,19 @@ def create_ui() -> gr.Blocks:
|
|
1164 |
).then(
|
1165 |
fn=handle_bot_response,
|
1166 |
inputs=[chatbot],
|
1167 |
-
outputs=[chatbot]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1168 |
)
|
|
|
1169 |
send_btn.click(
|
1170 |
fn=handle_user_message,
|
1171 |
inputs=[msg_input, chatbot],
|
@@ -1173,77 +1113,41 @@ def create_ui() -> gr.Blocks:
|
|
1173 |
).then(
|
1174 |
fn=handle_bot_response,
|
1175 |
inputs=[chatbot],
|
1176 |
-
outputs=[chatbot]
|
1177 |
-
)
|
1178 |
-
end_chat_btn.click(
|
1179 |
-
fn=handle_end_chat,
|
1180 |
-
inputs=[chatbot],
|
1181 |
-
outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
|
1182 |
).then(
|
|
|
1183 |
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
1184 |
inputs=[user_requirements_state],
|
1185 |
outputs=[current_requirements_display]
|
1186 |
-
)
|
1187 |
-
|
1188 |
-
fn=
|
1189 |
-
inputs=[
|
1190 |
-
outputs=[
|
1191 |
)
|
1192 |
|
1193 |
# Repo Explorer Tab
|
1194 |
setup_repo_explorer_events(repo_components, repo_states)
|
1195 |
|
1196 |
-
#
|
1197 |
-
visit_repo_btn.click(
|
1198 |
-
fn=handle_visit_repo,
|
1199 |
-
inputs=[selected_repo_display],
|
1200 |
-
outputs=[repo_action_modal, selected_repo_display],
|
1201 |
-
js="(repo_id) => { if(repo_id && repo_id.trim()) { window.open('https://huggingface.co/spaces/' + repo_id.trim(), '_blank'); } }"
|
1202 |
-
)
|
1203 |
-
explore_repo_btn.click(
|
1204 |
-
fn=handle_explore_repo,
|
1205 |
-
inputs=[selected_repo_id_state],
|
1206 |
-
outputs=[
|
1207 |
-
repo_action_modal,
|
1208 |
-
tabs,
|
1209 |
-
repo_components["repo_explorer_input"]
|
1210 |
-
],
|
1211 |
-
js="""(repo_id) => {
|
1212 |
-
console.log('DEBUG: Navigate to repo explorer for:', repo_id);
|
1213 |
-
setTimeout(() => {
|
1214 |
-
window.scrollTo({top: 0, behavior: 'smooth'});
|
1215 |
-
}, 200);
|
1216 |
-
}"""
|
1217 |
-
)
|
1218 |
-
cancel_modal_btn.click(
|
1219 |
-
fn=handle_cancel_modal,
|
1220 |
-
outputs=[repo_action_modal]
|
1221 |
-
)
|
1222 |
-
|
1223 |
-
# Text expansion modal events
|
1224 |
-
close_text_modal_btn.click(
|
1225 |
-
fn=handle_close_text_modal,
|
1226 |
-
outputs=[text_expansion_modal]
|
1227 |
-
)
|
1228 |
-
|
1229 |
-
# Add dataframe selection event
|
1230 |
df_output.select(
|
1231 |
-
fn=
|
1232 |
inputs=[df_output],
|
1233 |
-
outputs=[
|
|
|
1234 |
)
|
1235 |
|
1236 |
-
# Add selection event for top repositories dataframe too
|
1237 |
top_repos_df.select(
|
1238 |
-
fn=
|
1239 |
inputs=[top_repos_df],
|
1240 |
-
outputs=[
|
|
|
1241 |
)
|
1242 |
|
1243 |
# Reset button event
|
1244 |
reset_all_btn.click(
|
1245 |
fn=handle_reset_everything,
|
1246 |
-
outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section,
|
1247 |
)
|
1248 |
|
1249 |
return app
|
|
|
29 |
"Your role is to ask clarifying questions to understand exactly what the user is looking for. "
|
30 |
"Ask about their use case, preferred programming language, specific features needed, project type, etc. "
|
31 |
"When you feel you have gathered enough detailed information about their requirements, "
|
32 |
+
"tell the user: 'I think I have enough information about your requirements. I'll now search for relevant repositories automatically.' "
|
33 |
"Focus on understanding their needs, not providing solutions."
|
34 |
)
|
35 |
+
CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you find the perfect Hugging Face repository. Tell me about your project - what are you trying to build? I'll ask some questions to understand your needs and then automatically find relevant repositories for you."
|
36 |
|
37 |
# --- Helper Functions (Logic) ---
|
38 |
|
39 |
+
def is_repo_id_format(text: str) -> bool:
|
40 |
+
"""Check if text looks like repository IDs (contains forward slashes)."""
|
41 |
+
lines = [line.strip() for line in re.split(r'[\n,]+', text) if line.strip()]
|
42 |
+
if not lines:
|
43 |
+
return False
|
44 |
+
|
45 |
+
# If most lines contain forward slashes, treat as repo IDs
|
46 |
+
slash_count = sum(1 for line in lines if '/' in line)
|
47 |
+
return slash_count >= len(lines) * 0.5 # At least 50% have slashes
|
48 |
+
|
49 |
+
def should_auto_extract_keywords(history: List[Dict[str, str]]) -> bool:
|
50 |
+
"""Determine if we should automatically extract keywords from conversation."""
|
51 |
+
if not history or len(history) < 4: # Need at least 2 exchanges
|
52 |
+
return False
|
53 |
+
|
54 |
+
# Check if the last assistant message suggests we have enough info
|
55 |
+
last_assistant_msg = ""
|
56 |
+
for msg in reversed(history):
|
57 |
+
if msg.get('role') == 'assistant':
|
58 |
+
last_assistant_msg = msg.get('content', '').lower()
|
59 |
+
break
|
60 |
+
|
61 |
+
# Look for key phrases that indicate readiness
|
62 |
+
ready_phrases = [
|
63 |
+
"enough information",
|
64 |
+
"search for repositories",
|
65 |
+
"find repositories",
|
66 |
+
"look for repositories",
|
67 |
+
"automatically",
|
68 |
+
"ready to search"
|
69 |
+
]
|
70 |
+
|
71 |
+
return any(phrase in last_assistant_msg for phrase in ready_phrases)
|
72 |
+
|
73 |
def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
|
74 |
"""
|
75 |
Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
|
|
|
614 |
|
615 |
with gr.Tabs() as tabs:
|
616 |
# --- Input Tab ---
|
617 |
+
with gr.TabItem("📝 Smart Search", id="input_tab"):
|
618 |
+
gr.Markdown("### 🔍 Intelligent Repository Discovery")
|
619 |
+
gr.Markdown("💡 **Enter repository IDs (owner/repo) or keywords - I'll automatically detect which type and process accordingly!**")
|
620 |
+
|
621 |
+
with gr.Row():
|
622 |
+
smart_input = gr.Textbox(
|
623 |
+
label="Repository IDs or Keywords",
|
624 |
+
lines=6,
|
625 |
+
placeholder="Examples:\n• Repository IDs: microsoft/DialoGPT-medium, openai/whisper\n• Keywords: text generation, image classification, sentiment analysis",
|
626 |
+
info="Smart detection: Use / for repo IDs, or enter keywords for search"
|
627 |
+
)
|
628 |
+
|
629 |
+
with gr.Row():
|
630 |
+
auto_analyze_checkbox = gr.Checkbox(
|
631 |
+
label="🚀 Auto-analyze repositories",
|
632 |
+
value=True,
|
633 |
+
info="Automatically start analysis when repositories are found"
|
634 |
+
)
|
|
|
|
|
|
|
635 |
|
636 |
status_box_input = gr.Textbox(label="📊 Status", interactive=False, lines=2)
|
637 |
|
638 |
# --- Analysis Tab ---
|
639 |
+
with gr.TabItem("🔬 Analysis & Results", id="analysis_tab"):
|
640 |
+
gr.Markdown("### 🧪 Repository Analysis Results")
|
641 |
|
642 |
# Display current user requirements
|
643 |
with gr.Row():
|
644 |
current_requirements_display = gr.Textbox(
|
645 |
+
label="📋 Active Requirements Context",
|
646 |
interactive=False,
|
647 |
+
lines=2,
|
648 |
+
info="Requirements from AI chat for better relevance scoring"
|
649 |
)
|
650 |
|
651 |
+
# Manual analysis trigger (hidden by default, shown only when auto-analyze is off)
|
652 |
+
with gr.Row(visible=False) as manual_analysis_row:
|
653 |
+
analyze_all_btn = gr.Button("🚀 Analyze All Repositories", variant="primary", size="lg")
|
654 |
+
status_box_analysis = gr.Textbox(label="📈 Analysis Status", interactive=False, lines=2)
|
655 |
|
656 |
# Progress bar for batch analysis
|
657 |
+
analysis_progress = gr.Progress()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
|
659 |
gr.Markdown("### 📊 Results Dashboard")
|
660 |
|
661 |
# Top 3 Most Relevant Repositories (initially hidden)
|
662 |
with gr.Column(visible=False) as top_repos_section:
|
663 |
gr.Markdown("### 🏆 Top 3 Most Relevant Repositories")
|
664 |
+
gr.Markdown("🎯 **Click repository names to visit them directly on Hugging Face:**")
|
665 |
top_repos_df = gr.Dataframe(
|
666 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
667 |
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
|
|
669 |
interactive=False
|
670 |
)
|
671 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
gr.Markdown("### 📋 All Analysis Results")
|
673 |
+
gr.Markdown("💡 **Click repository names to visit them on Hugging Face**")
|
674 |
df_output = gr.Dataframe(
|
675 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
676 |
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
|
|
680 |
|
681 |
# --- Chatbot Tab ---
|
682 |
with gr.TabItem("🤖 AI Assistant", id="chatbot_tab"):
|
683 |
+
gr.Markdown("### 💬 Intelligent Repository Discovery Assistant")
|
684 |
+
gr.Markdown("🎯 **Tell me what you're building, and I'll automatically find the best repositories for you!**")
|
685 |
|
686 |
chatbot = gr.Chatbot(
|
687 |
label="🤖 AI Assistant",
|
688 |
+
height=500,
|
689 |
type="messages",
|
690 |
avatar_images=(
|
691 |
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
|
|
697 |
with gr.Row():
|
698 |
msg_input = gr.Textbox(
|
699 |
label="💭 Your Message",
|
700 |
+
placeholder="Tell me about your project...",
|
701 |
lines=1,
|
702 |
+
scale=5,
|
703 |
+
info="Describe what you're building and I'll find the perfect repositories"
|
704 |
)
|
705 |
+
send_btn = gr.Button("📤", variant="primary", scale=1)
|
|
|
|
|
706 |
|
707 |
+
# Status and extracted info (auto-updated, no manual buttons needed)
|
708 |
with gr.Row():
|
709 |
+
with gr.Column():
|
710 |
+
chat_status = gr.Textbox(
|
711 |
+
label="🎯 Chat Status",
|
712 |
+
interactive=False,
|
713 |
+
lines=2,
|
714 |
+
info="Conversation progress and auto-actions"
|
715 |
+
)
|
716 |
with gr.Column():
|
717 |
extracted_keywords_output = gr.Textbox(
|
718 |
+
label="🏷️ Auto-Extracted Keywords",
|
719 |
interactive=False,
|
720 |
show_copy_button=True,
|
721 |
+
info="Keywords automatically extracted and used for search"
|
|
|
|
|
|
|
|
|
|
|
|
|
722 |
)
|
723 |
|
724 |
# --- Repo Explorer Tab ---
|
|
|
740 |
|
741 |
# --- Event Handler Functions ---
|
742 |
|
743 |
+
def handle_smart_input(text: str, auto_analyze: bool) -> Tuple[List[str], int, pd.DataFrame, str, Any, str]:
|
744 |
+
"""Smart input handler that detects if input is repo IDs or keywords and processes accordingly."""
|
745 |
+
if not text.strip():
|
746 |
+
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs or keywords.", gr.update(selected="input_tab"), ""
|
747 |
|
748 |
+
# Determine input type
|
749 |
+
if is_repo_id_format(text):
|
750 |
+
# Process as repository IDs
|
751 |
+
repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
|
752 |
+
write_repos_to_csv(repo_ids)
|
753 |
+
df = format_dataframe_for_display(read_csv_to_dataframe())
|
754 |
+
status = f"✅ Found {len(repo_ids)} repository IDs. "
|
755 |
+
|
756 |
+
if auto_analyze:
|
757 |
+
status += "Starting automatic analysis..."
|
758 |
+
return repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "auto_analyze"
|
759 |
+
else:
|
760 |
+
status += "Ready for manual analysis."
|
761 |
+
return repo_ids, 0, df, status, gr.update(selected="analysis_tab"), ""
|
762 |
+
else:
|
763 |
+
# Process as keywords
|
764 |
+
keyword_list = [k.strip() for k in re.split(r'[\n,]+', text) if k.strip()]
|
765 |
+
repo_ids = []
|
766 |
+
for kw in keyword_list:
|
767 |
+
repo_ids.extend(search_top_spaces(kw, limit=5))
|
768 |
+
|
769 |
+
unique_repo_ids = list(dict.fromkeys(repo_ids))
|
770 |
+
write_repos_to_csv(unique_repo_ids)
|
771 |
+
df = format_dataframe_for_display(read_csv_to_dataframe())
|
772 |
+
status = f"🔍 Found {len(unique_repo_ids)} repositories from keywords. "
|
773 |
+
|
774 |
+
if auto_analyze:
|
775 |
+
status += "Starting automatic analysis..."
|
776 |
+
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "auto_analyze"
|
777 |
+
else:
|
778 |
+
status += "Ready for manual analysis."
|
779 |
+
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab"), ""
|
780 |
|
781 |
+
def handle_auto_analyze_toggle(auto_analyze: bool) -> Any:
|
782 |
+
"""Show/hide manual analysis controls based on auto-analyze setting."""
|
783 |
+
return gr.update(visible=not auto_analyze)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
|
785 |
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
|
786 |
"""Appends the user's message to the history, preparing for the bot's response."""
|
|
|
792 |
history.append({"role": "user", "content": user_message})
|
793 |
return history, ""
|
794 |
|
795 |
+
def handle_bot_response(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, str, str, List[str], int, pd.DataFrame, Any]:
|
796 |
+
"""Generates bot response and automatically extracts keywords if conversation is ready."""
|
797 |
if not history or history[-1]["role"] != "user":
|
798 |
+
return history, "", "", "", [], 0, pd.DataFrame(), gr.update()
|
799 |
|
800 |
user_message = history[-1]["content"]
|
801 |
# Convert all messages *before* the last user message into tuples for the API
|
|
|
803 |
|
804 |
response = chat_with_user(user_message, tuple_history_for_api)
|
805 |
history.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|
|
806 |
|
807 |
+
# Check if we should auto-extract keywords and search
|
808 |
+
if should_auto_extract_keywords(history):
|
809 |
+
# Auto-extract keywords
|
810 |
+
tuple_history = convert_messages_to_tuples(history)
|
811 |
+
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
|
812 |
|
813 |
+
# Sanitize keywords
|
814 |
+
cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
|
815 |
+
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
|
816 |
+
|
817 |
+
if cleaned_keywords:
|
818 |
+
final_keywords_str = ", ".join(cleaned_keywords)
|
819 |
+
|
820 |
+
# Extract user requirements
|
821 |
+
user_requirements = extract_user_requirements_from_chat(history)
|
822 |
+
|
823 |
+
# Auto-search repositories
|
824 |
+
repo_ids = []
|
825 |
+
for kw in cleaned_keywords[:3]: # Use top 3 keywords to avoid too many results
|
826 |
+
repo_ids.extend(search_top_spaces(kw, limit=5))
|
827 |
+
|
828 |
+
unique_repo_ids = list(dict.fromkeys(repo_ids))
|
829 |
+
write_repos_to_csv(unique_repo_ids)
|
830 |
+
df = format_dataframe_for_display(read_csv_to_dataframe())
|
831 |
+
|
832 |
+
chat_status = f"🎯 Auto-extracted keywords and found {len(unique_repo_ids)} repositories. Analysis starting automatically..."
|
833 |
+
|
834 |
+
return history, chat_status, final_keywords_str, user_requirements, unique_repo_ids, 0, df, gr.update(selected="analysis_tab")
|
835 |
|
836 |
+
return history, "💬 Conversation continuing...", "", "", [], 0, pd.DataFrame(), gr.update()
|
|
|
837 |
|
838 |
+
def handle_repo_click(evt: gr.SelectData, df_data) -> str:
|
839 |
+
"""Handle direct repository clicks - open HF space directly."""
|
|
|
|
|
|
|
|
|
840 |
if evt is None:
|
841 |
+
return ""
|
842 |
|
843 |
try:
|
|
|
844 |
row_idx = evt.index[0]
|
845 |
col_idx = evt.index[1]
|
|
|
846 |
|
847 |
+
# Only handle clicks on the repository name column (column 0)
|
848 |
+
if col_idx == 0 and isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data):
|
849 |
+
repo_id = df_data.iloc[row_idx, 0]
|
850 |
|
851 |
+
if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan':
|
852 |
+
hf_url = f"https://huggingface.co/spaces/{str(repo_id).strip()}"
|
853 |
+
logger.info(f"Opening repository: {hf_url}")
|
854 |
+
return hf_url
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
855 |
except Exception as e:
|
856 |
+
logger.error(f"Error handling repository click: {e}")
|
|
|
857 |
|
858 |
+
return ""
|
859 |
+
|
860 |
+
def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
|
861 |
+
"""Extract user requirements from chatbot conversation."""
|
862 |
+
if not history:
|
863 |
+
return ""
|
864 |
+
|
865 |
+
user_messages = []
|
866 |
+
for msg in history:
|
867 |
+
if msg.get('role') == 'user':
|
868 |
+
user_messages.append(msg.get('content', ''))
|
869 |
+
|
870 |
+
if not user_messages:
|
871 |
+
return ""
|
872 |
+
|
873 |
+
# Combine all user messages as requirements
|
874 |
+
requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
|
875 |
+
return requirements
|
876 |
|
877 |
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
|
878 |
"""Analyzes all repositories in the CSV file with progress tracking."""
|
|
|
994 |
error_status = f"❌ Batch analysis failed: {e}"
|
995 |
return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False)
|
996 |
|
997 |
+
def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, List[Dict[str, str]], str, str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
998 |
"""Reset everything to initial state - clear all data, CSV, and UI components."""
|
999 |
try:
|
1000 |
# Clear the CSV file
|
|
|
1029 |
empty_df, # df_output
|
1030 |
empty_df, # top_repos_df
|
1031 |
gr.update(visible=False), # top_repos_section
|
|
|
|
|
1032 |
chatbot_reset, # chatbot
|
1033 |
+
status_reset, # status_box_input
|
1034 |
current_requirements_reset, # current_requirements_display
|
1035 |
extracted_keywords_reset # extracted_keywords_output
|
1036 |
)
|
|
|
1045 |
pd.DataFrame(), # df_output
|
1046 |
pd.DataFrame(), # top_repos_df
|
1047 |
gr.update(visible=False), # top_repos_section
|
|
|
|
|
1048 |
[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot
|
1049 |
+
error_status, # status_box_input
|
1050 |
"No requirements extracted yet.", # current_requirements_display
|
1051 |
"" # extracted_keywords_output
|
1052 |
)
|
|
|
1059 |
outputs=[chatbot]
|
1060 |
)
|
1061 |
|
1062 |
+
# Smart Input with Auto-processing
|
1063 |
+
smart_input.submit(
|
1064 |
+
fn=handle_smart_input,
|
1065 |
+
inputs=[smart_input, auto_analyze_checkbox],
|
1066 |
+
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_input, tabs, status_box_input]
|
1067 |
+
).then(
|
1068 |
+
# If auto_analyze is enabled and we got repos, start analysis automatically
|
1069 |
+
fn=lambda repo_ids, user_reqs, trigger: handle_analyze_all_repos(repo_ids, user_reqs) if trigger == "auto_analyze" and repo_ids else (pd.DataFrame(), "Ready for analysis.", pd.DataFrame(), gr.update(visible=False)),
|
1070 |
+
inputs=[repo_ids_state, user_requirements_state, status_box_input],
|
1071 |
+
outputs=[df_output, status_box_input, top_repos_df, top_repos_section]
|
1072 |
)
|
1073 |
+
|
1074 |
+
# Auto-analyze checkbox toggle
|
1075 |
+
auto_analyze_checkbox.change(
|
1076 |
+
fn=handle_auto_analyze_toggle,
|
1077 |
+
inputs=[auto_analyze_checkbox],
|
1078 |
+
outputs=[manual_analysis_row]
|
1079 |
)
|
1080 |
|
1081 |
+
# Manual analysis button (when auto-analyze is disabled)
|
1082 |
analyze_all_btn.click(
|
|
|
|
|
|
|
1083 |
fn=handle_analyze_all_repos,
|
1084 |
inputs=[repo_ids_state, user_requirements_state],
|
1085 |
outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
|
1086 |
)
|
1087 |
|
1088 |
+
# Chatbot with Auto-extraction and Auto-search
|
1089 |
msg_input.submit(
|
1090 |
fn=handle_user_message,
|
1091 |
inputs=[msg_input, chatbot],
|
|
|
1093 |
).then(
|
1094 |
fn=handle_bot_response,
|
1095 |
inputs=[chatbot],
|
1096 |
+
outputs=[chatbot, chat_status, extracted_keywords_output, user_requirements_state, repo_ids_state, current_repo_idx_state, df_output, tabs]
|
1097 |
+
).then(
|
1098 |
+
# Update requirements display when they change
|
1099 |
+
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
1100 |
+
inputs=[user_requirements_state],
|
1101 |
+
outputs=[current_requirements_display]
|
1102 |
+
).then(
|
1103 |
+
# If we got repos from chatbot, auto-analyze them
|
1104 |
+
fn=lambda repo_ids, user_reqs: handle_analyze_all_repos(repo_ids, user_reqs) if repo_ids else (pd.DataFrame(), "", pd.DataFrame(), gr.update(visible=False)),
|
1105 |
+
inputs=[repo_ids_state, user_requirements_state],
|
1106 |
+
outputs=[df_output, chat_status, top_repos_df, top_repos_section]
|
1107 |
)
|
1108 |
+
|
1109 |
send_btn.click(
|
1110 |
fn=handle_user_message,
|
1111 |
inputs=[msg_input, chatbot],
|
|
|
1113 |
).then(
|
1114 |
fn=handle_bot_response,
|
1115 |
inputs=[chatbot],
|
1116 |
+
outputs=[chatbot, chat_status, extracted_keywords_output, user_requirements_state, repo_ids_state, current_repo_idx_state, df_output, tabs]
|
|
|
|
|
|
|
|
|
|
|
1117 |
).then(
|
1118 |
+
# Update requirements display when they change
|
1119 |
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
1120 |
inputs=[user_requirements_state],
|
1121 |
outputs=[current_requirements_display]
|
1122 |
+
).then(
|
1123 |
+
# If we got repos from chatbot, auto-analyze them
|
1124 |
+
fn=lambda repo_ids, user_reqs: handle_analyze_all_repos(repo_ids, user_reqs) if repo_ids else (pd.DataFrame(), "", pd.DataFrame(), gr.update(visible=False)),
|
1125 |
+
inputs=[repo_ids_state, user_requirements_state],
|
1126 |
+
outputs=[df_output, chat_status, top_repos_df, top_repos_section]
|
1127 |
)
|
1128 |
|
1129 |
# Repo Explorer Tab
|
1130 |
setup_repo_explorer_events(repo_components, repo_states)
|
1131 |
|
1132 |
+
# Direct Repository Clicks - Open HF Space
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1133 |
df_output.select(
|
1134 |
+
fn=handle_repo_click,
|
1135 |
inputs=[df_output],
|
1136 |
+
outputs=[status_box_input],
|
1137 |
+
js="(url) => { if(url && url.trim()) { window.open(url, '_blank'); } }"
|
1138 |
)
|
1139 |
|
|
|
1140 |
top_repos_df.select(
|
1141 |
+
fn=handle_repo_click,
|
1142 |
inputs=[top_repos_df],
|
1143 |
+
outputs=[status_box_input],
|
1144 |
+
js="(url) => { if(url && url.trim()) { window.open(url, '_blank'); } }"
|
1145 |
)
|
1146 |
|
1147 |
# Reset button event
|
1148 |
reset_all_btn.click(
|
1149 |
fn=handle_reset_everything,
|
1150 |
+
outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section, chatbot, status_box_input, current_requirements_display, extracted_keywords_output]
|
1151 |
)
|
1152 |
|
1153 |
return app
|
old_app2.py
ADDED
@@ -0,0 +1,1253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import regex as re
|
3 |
+
import csv
|
4 |
+
import pandas as pd
|
5 |
+
from typing import List, Dict, Tuple, Any
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
|
10 |
+
# Import core logic from other modules, as in app_old.py
|
11 |
+
from analyzer import (
|
12 |
+
combine_repo_files_for_llm,
|
13 |
+
parse_llm_json_response,
|
14 |
+
analyze_combined_file,
|
15 |
+
handle_load_repository
|
16 |
+
)
|
17 |
+
from hf_utils import download_filtered_space_files, search_top_spaces
|
18 |
+
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
19 |
+
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events
|
20 |
+
|
21 |
+
# --- Configuration ---
|
22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
CSV_FILE = "repo_ids.csv"
|
26 |
+
CHATBOT_SYSTEM_PROMPT = (
|
27 |
+
"You are a helpful assistant whose ONLY job is to gather information about the user's ideal repository requirements. "
|
28 |
+
"DO NOT suggest any specific repositories or give repository recommendations. "
|
29 |
+
"Your role is to ask clarifying questions to understand exactly what the user is looking for. "
|
30 |
+
"Ask about their use case, preferred programming language, specific features needed, project type, etc. "
|
31 |
+
"When you feel you have gathered enough detailed information about their requirements, "
|
32 |
+
"tell the user: 'I think I have enough information about your requirements. Please click the Extract Keywords button to search for repositories.' "
|
33 |
+
"Focus on understanding their needs, not providing solutions."
|
34 |
+
)
|
35 |
+
CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you define your ideal Hugging Face repository requirements. I won't suggest specific repos - my job is to understand exactly what you're looking for. Tell me about your project: What type of application are you building? What's your use case?"
|
36 |
+
|
37 |
+
# --- Helper Functions (Logic) ---
|
38 |
+
|
39 |
+
def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
|
40 |
+
"""
|
41 |
+
Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
|
42 |
+
"""
|
43 |
+
try:
|
44 |
+
if df.empty:
|
45 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
46 |
+
|
47 |
+
# Filter out rows with no analysis data
|
48 |
+
analyzed_df = df.copy()
|
49 |
+
analyzed_df = analyzed_df[
|
50 |
+
(analyzed_df['strength'].str.strip() != '') |
|
51 |
+
(analyzed_df['weaknesses'].str.strip() != '') |
|
52 |
+
(analyzed_df['speciality'].str.strip() != '') |
|
53 |
+
(analyzed_df['relevance rating'].str.strip() != '')
|
54 |
+
]
|
55 |
+
|
56 |
+
if analyzed_df.empty:
|
57 |
+
logger.warning("No analyzed repositories found for LLM selection")
|
58 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
59 |
+
|
60 |
+
# Create a prompt for the LLM
|
61 |
+
csv_data = ""
|
62 |
+
for idx, row in analyzed_df.iterrows():
|
63 |
+
csv_data += f"Repository: {row['repo id']}\n"
|
64 |
+
csv_data += f"Strengths: {row['strength']}\n"
|
65 |
+
csv_data += f"Weaknesses: {row['weaknesses']}\n"
|
66 |
+
csv_data += f"Speciality: {row['speciality']}\n"
|
67 |
+
csv_data += f"Relevance: {row['relevance rating']}\n\n"
|
68 |
+
|
69 |
+
user_context = user_requirements if user_requirements.strip() else "General repository recommendation"
|
70 |
+
|
71 |
+
prompt = f"""Based on the user's requirements and the analysis of repositories below, select the top {top_n} most relevant repositories.
|
72 |
+
|
73 |
+
User Requirements:
|
74 |
+
{user_context}
|
75 |
+
|
76 |
+
Repository Analysis Data:
|
77 |
+
{csv_data}
|
78 |
+
|
79 |
+
Please analyze all repositories and select the {top_n} most relevant ones based on:
|
80 |
+
1. How well they match the user's specific requirements
|
81 |
+
2. Their strengths and capabilities
|
82 |
+
3. Their relevance rating
|
83 |
+
4. Their speciality alignment with user needs
|
84 |
+
|
85 |
+
Return ONLY a JSON list of the repository IDs in order of relevance (most relevant first). Example format:
|
86 |
+
["repo1", "repo2", "repo3"]
|
87 |
+
|
88 |
+
Selected repositories:"""
|
89 |
+
|
90 |
+
try:
|
91 |
+
from openai import OpenAI
|
92 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
93 |
+
client.base_url = os.getenv("base_url")
|
94 |
+
|
95 |
+
response = client.chat.completions.create(
|
96 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
97 |
+
messages=[
|
98 |
+
{"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
|
99 |
+
{"role": "user", "content": prompt}
|
100 |
+
],
|
101 |
+
max_tokens=200,
|
102 |
+
temperature=0.3
|
103 |
+
)
|
104 |
+
|
105 |
+
llm_response = response.choices[0].message.content.strip()
|
106 |
+
logger.info(f"LLM response for top repos: {llm_response}")
|
107 |
+
|
108 |
+
# Extract JSON from response
|
109 |
+
import json
|
110 |
+
import re
|
111 |
+
|
112 |
+
# Try to find JSON array in the response
|
113 |
+
json_match = re.search(r'\[.*\]', llm_response)
|
114 |
+
if json_match:
|
115 |
+
selected_repos = json.loads(json_match.group())
|
116 |
+
logger.info(f"LLM selected repositories: {selected_repos}")
|
117 |
+
|
118 |
+
# Filter dataframe to only include selected repositories in order
|
119 |
+
top_repos_list = []
|
120 |
+
for repo_id in selected_repos[:top_n]:
|
121 |
+
matching_rows = analyzed_df[analyzed_df['repo id'] == repo_id]
|
122 |
+
if not matching_rows.empty:
|
123 |
+
top_repos_list.append(matching_rows.iloc[0])
|
124 |
+
|
125 |
+
if top_repos_list:
|
126 |
+
top_repos = pd.DataFrame(top_repos_list)
|
127 |
+
logger.info(f"Successfully selected {len(top_repos)} repositories using LLM")
|
128 |
+
return top_repos
|
129 |
+
|
130 |
+
# Fallback: if LLM response parsing fails, use first N analyzed repos
|
131 |
+
logger.warning("Failed to parse LLM response, using fallback selection")
|
132 |
+
return analyzed_df.head(top_n)
|
133 |
+
|
134 |
+
except Exception as llm_error:
|
135 |
+
logger.error(f"LLM selection failed: {llm_error}")
|
136 |
+
# Fallback: return first N repositories with analysis data
|
137 |
+
return analyzed_df.head(top_n)
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
logger.error(f"Error in LLM-based repo selection: {e}")
|
141 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
142 |
+
|
143 |
+
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
144 |
+
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
|
145 |
+
try:
|
146 |
+
with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
|
147 |
+
writer = csv.writer(csvfile)
|
148 |
+
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
149 |
+
for repo_id in repo_ids:
|
150 |
+
writer.writerow([repo_id, "", "", "", ""])
|
151 |
+
logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
|
152 |
+
except Exception as e:
|
153 |
+
logger.error(f"Error writing to CSV: {e}")
|
154 |
+
|
155 |
+
def format_text_for_dataframe(text: str, max_length: int = 200) -> str:
|
156 |
+
"""Format text for better display in dataframe by truncating and cleaning."""
|
157 |
+
if not text or pd.isna(text):
|
158 |
+
return ""
|
159 |
+
|
160 |
+
# Clean the text
|
161 |
+
text = str(text).strip()
|
162 |
+
|
163 |
+
# Remove excessive whitespace and newlines
|
164 |
+
text = re.sub(r'\s+', ' ', text)
|
165 |
+
|
166 |
+
# Truncate if too long
|
167 |
+
if len(text) > max_length:
|
168 |
+
text = text[:max_length-3] + "..."
|
169 |
+
|
170 |
+
return text
|
171 |
+
|
172 |
+
def read_csv_to_dataframe() -> pd.DataFrame:
|
173 |
+
"""Reads the CSV file into a pandas DataFrame with full text preserved."""
|
174 |
+
try:
|
175 |
+
df = pd.read_csv(CSV_FILE, dtype=str).fillna('')
|
176 |
+
|
177 |
+
# Keep the full text intact - don't truncate here
|
178 |
+
# The truncation will be handled in the UI display layer
|
179 |
+
|
180 |
+
return df
|
181 |
+
except FileNotFoundError:
|
182 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
183 |
+
except Exception as e:
|
184 |
+
logger.error(f"Error reading CSV: {e}")
|
185 |
+
return pd.DataFrame()
|
186 |
+
|
187 |
+
def format_dataframe_for_display(df: pd.DataFrame) -> pd.DataFrame:
|
188 |
+
"""Returns dataframe with full text (no truncation) for display."""
|
189 |
+
if df.empty:
|
190 |
+
return df
|
191 |
+
|
192 |
+
# Return the dataframe as-is without any text truncation
|
193 |
+
# This will show the full text content in the CSV display
|
194 |
+
return df.copy()
|
195 |
+
|
196 |
+
def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]:
|
197 |
+
"""
|
198 |
+
Downloads, analyzes a single repo, updates the CSV, and returns results.
|
199 |
+
Now includes user requirements for better relevance rating.
|
200 |
+
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
|
201 |
+
"""
|
202 |
+
try:
|
203 |
+
logger.info(f"Starting analysis for repo: {repo_id}")
|
204 |
+
download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
|
205 |
+
txt_path = combine_repo_files_for_llm()
|
206 |
+
|
207 |
+
with open(txt_path, "r", encoding="utf-8") as f:
|
208 |
+
combined_content = f.read()
|
209 |
+
|
210 |
+
llm_output = analyze_combined_file(txt_path, user_requirements)
|
211 |
+
|
212 |
+
last_start = llm_output.rfind('{')
|
213 |
+
last_end = llm_output.rfind('}')
|
214 |
+
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
|
215 |
+
|
216 |
+
llm_json = parse_llm_json_response(final_json_str)
|
217 |
+
|
218 |
+
summary = ""
|
219 |
+
if isinstance(llm_json, dict) and "error" not in llm_json:
|
220 |
+
strengths = llm_json.get("strength", "N/A")
|
221 |
+
weaknesses = llm_json.get("weaknesses", "N/A")
|
222 |
+
relevance = llm_json.get("relevance rating", "N/A")
|
223 |
+
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}"
|
224 |
+
else:
|
225 |
+
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
|
226 |
+
|
227 |
+
# Update CSV
|
228 |
+
df = read_csv_to_dataframe()
|
229 |
+
repo_found_in_df = False
|
230 |
+
for idx, row in df.iterrows():
|
231 |
+
if row["repo id"] == repo_id:
|
232 |
+
if isinstance(llm_json, dict):
|
233 |
+
df.at[idx, "strength"] = llm_json.get("strength", "")
|
234 |
+
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
|
235 |
+
df.at[idx, "speciality"] = llm_json.get("speciality", "")
|
236 |
+
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
|
237 |
+
repo_found_in_df = True
|
238 |
+
break
|
239 |
+
|
240 |
+
if not repo_found_in_df:
|
241 |
+
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
|
242 |
+
|
243 |
+
# Write CSV with better error handling and flushing
|
244 |
+
try:
|
245 |
+
df.to_csv(CSV_FILE, index=False)
|
246 |
+
# Force file system flush
|
247 |
+
os.sync() if hasattr(os, 'sync') else None
|
248 |
+
logger.info(f"Successfully updated CSV for {repo_id}")
|
249 |
+
except Exception as csv_error:
|
250 |
+
logger.error(f"Failed to write CSV for {repo_id}: {csv_error}")
|
251 |
+
# Try once more with a small delay
|
252 |
+
time.sleep(0.2)
|
253 |
+
try:
|
254 |
+
df.to_csv(CSV_FILE, index=False)
|
255 |
+
logger.info(f"Successfully updated CSV for {repo_id} on retry")
|
256 |
+
except Exception as retry_error:
|
257 |
+
logger.error(f"Failed to write CSV for {repo_id} on retry: {retry_error}")
|
258 |
+
|
259 |
+
logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
|
260 |
+
return combined_content, summary, df
|
261 |
+
|
262 |
+
except Exception as e:
|
263 |
+
logger.error(f"An error occurred during analysis of {repo_id}: {e}")
|
264 |
+
error_summary = f"Error analyzing repo: {e}"
|
265 |
+
return "", error_summary, format_dataframe_for_display(read_csv_to_dataframe())
|
266 |
+
|
267 |
+
# --- NEW: Helper for Chat History Conversion ---
|
268 |
+
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
|
269 |
+
"""
|
270 |
+
Converts Gradio's 'messages' format to the old 'tuple' format for compatibility.
|
271 |
+
This robust version correctly handles histories that start with an assistant message.
|
272 |
+
"""
|
273 |
+
tuple_history = []
|
274 |
+
# Iterate through the history to find user messages
|
275 |
+
for i, msg in enumerate(history):
|
276 |
+
if msg['role'] == 'user':
|
277 |
+
# Once a user message is found, check if the next message is from the assistant
|
278 |
+
if i + 1 < len(history) and history[i+1]['role'] == 'assistant':
|
279 |
+
user_content = msg['content']
|
280 |
+
assistant_content = history[i+1]['content']
|
281 |
+
tuple_history.append((user_content, assistant_content))
|
282 |
+
return tuple_history
|
283 |
+
|
284 |
+
# --- Gradio UI ---
|
285 |
+
|
286 |
+
def create_ui() -> gr.Blocks:
|
287 |
+
"""Creates and configures the entire Gradio interface."""
|
288 |
+
|
289 |
+
css = """
|
290 |
+
/* Modern sleek design */
|
291 |
+
.gradio-container {
|
292 |
+
font-family: 'Inter', 'system-ui', sans-serif;
|
293 |
+
background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%);
|
294 |
+
min-height: 100vh;
|
295 |
+
}
|
296 |
+
|
297 |
+
.gr-form {
|
298 |
+
background: rgba(255, 255, 255, 0.95);
|
299 |
+
backdrop-filter: blur(10px);
|
300 |
+
border-radius: 16px;
|
301 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
302 |
+
padding: 24px;
|
303 |
+
margin: 16px;
|
304 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
305 |
+
}
|
306 |
+
|
307 |
+
.gr-button {
|
308 |
+
background: linear-gradient(45deg, #667eea, #764ba2);
|
309 |
+
border: none;
|
310 |
+
border-radius: 12px;
|
311 |
+
color: white;
|
312 |
+
font-weight: 600;
|
313 |
+
padding: 12px 24px;
|
314 |
+
transition: all 0.3s ease;
|
315 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
|
316 |
+
}
|
317 |
+
|
318 |
+
.gr-button:hover {
|
319 |
+
transform: translateY(-2px);
|
320 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6);
|
321 |
+
}
|
322 |
+
|
323 |
+
.gr-textbox {
|
324 |
+
border: 2px solid rgba(102, 126, 234, 0.2);
|
325 |
+
border-radius: 12px;
|
326 |
+
background: rgba(255, 255, 255, 0.9);
|
327 |
+
transition: all 0.3s ease;
|
328 |
+
}
|
329 |
+
|
330 |
+
.gr-textbox:focus {
|
331 |
+
border-color: #667eea;
|
332 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
333 |
+
}
|
334 |
+
|
335 |
+
.gr-panel {
|
336 |
+
background: rgba(255, 255, 255, 0.95);
|
337 |
+
border-radius: 16px;
|
338 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
339 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
340 |
+
}
|
341 |
+
|
342 |
+
.gr-tab-nav {
|
343 |
+
background: rgba(255, 255, 255, 0.95);
|
344 |
+
border-radius: 12px 12px 0 0;
|
345 |
+
backdrop-filter: blur(10px);
|
346 |
+
}
|
347 |
+
|
348 |
+
.gr-tab-nav button {
|
349 |
+
background: transparent;
|
350 |
+
border: none;
|
351 |
+
padding: 16px 24px;
|
352 |
+
font-weight: 600;
|
353 |
+
color: #666;
|
354 |
+
transition: all 0.3s ease;
|
355 |
+
}
|
356 |
+
|
357 |
+
.gr-tab-nav button.selected {
|
358 |
+
background: linear-gradient(45deg, #667eea, #764ba2);
|
359 |
+
color: white;
|
360 |
+
border-radius: 8px;
|
361 |
+
}
|
362 |
+
|
363 |
+
.chatbot {
|
364 |
+
border-radius: 16px;
|
365 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
366 |
+
}
|
367 |
+
|
368 |
+
/* Hide Gradio footer */
|
369 |
+
footer {
|
370 |
+
display: none !important;
|
371 |
+
}
|
372 |
+
|
373 |
+
/* Custom scrollbar */
|
374 |
+
::-webkit-scrollbar {
|
375 |
+
width: 8px;
|
376 |
+
}
|
377 |
+
|
378 |
+
::-webkit-scrollbar-track {
|
379 |
+
background: rgba(255, 255, 255, 0.1);
|
380 |
+
border-radius: 4px;
|
381 |
+
}
|
382 |
+
|
383 |
+
::-webkit-scrollbar-thumb {
|
384 |
+
background: linear-gradient(45deg, #667eea, #764ba2);
|
385 |
+
border-radius: 4px;
|
386 |
+
}
|
387 |
+
|
388 |
+
/* Improved dataframe styling for full text display */
|
389 |
+
.gr-dataframe {
|
390 |
+
border-radius: 12px;
|
391 |
+
overflow: hidden;
|
392 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
393 |
+
background: rgba(255, 255, 255, 0.98);
|
394 |
+
}
|
395 |
+
|
396 |
+
.gr-dataframe table {
|
397 |
+
width: 100%;
|
398 |
+
table-layout: fixed;
|
399 |
+
border-collapse: collapse;
|
400 |
+
}
|
401 |
+
|
402 |
+
/* Column width specifications for both dataframes */
|
403 |
+
.gr-dataframe th,
|
404 |
+
.gr-dataframe td {
|
405 |
+
padding: 12px 16px;
|
406 |
+
text-align: left;
|
407 |
+
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
|
408 |
+
font-size: 0.95rem;
|
409 |
+
line-height: 1.4;
|
410 |
+
}
|
411 |
+
|
412 |
+
/* Specific column widths - applying to both dataframes */
|
413 |
+
.gr-dataframe th:nth-child(1),
|
414 |
+
.gr-dataframe td:nth-child(1) { width: 16.67% !important; min-width: 16.67% !important; max-width: 16.67% !important; }
|
415 |
+
.gr-dataframe th:nth-child(2),
|
416 |
+
.gr-dataframe td:nth-child(2) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
|
417 |
+
.gr-dataframe th:nth-child(3),
|
418 |
+
.gr-dataframe td:nth-child(3) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
|
419 |
+
.gr-dataframe th:nth-child(4),
|
420 |
+
.gr-dataframe td:nth-child(4) { width: 20.83% !important; min-width: 20.83% !important; max-width: 20.83% !important; }
|
421 |
+
.gr-dataframe th:nth-child(5),
|
422 |
+
.gr-dataframe td:nth-child(5) { width: 12.5% !important; min-width: 12.5% !important; max-width: 12.5% !important; }
|
423 |
+
|
424 |
+
/* Additional specific targeting for both dataframes */
|
425 |
+
div[data-testid="dataframe"] table th:nth-child(1),
|
426 |
+
div[data-testid="dataframe"] table td:nth-child(1) { width: 16.67% !important; }
|
427 |
+
div[data-testid="dataframe"] table th:nth-child(2),
|
428 |
+
div[data-testid="dataframe"] table td:nth-child(2) { width: 25% !important; }
|
429 |
+
div[data-testid="dataframe"] table th:nth-child(3),
|
430 |
+
div[data-testid="dataframe"] table td:nth-child(3) { width: 25% !important; }
|
431 |
+
div[data-testid="dataframe"] table th:nth-child(4),
|
432 |
+
div[data-testid="dataframe"] table td:nth-child(4) { width: 20.83% !important; }
|
433 |
+
div[data-testid="dataframe"] table th:nth-child(5),
|
434 |
+
div[data-testid="dataframe"] table td:nth-child(5) { width: 12.5% !important; }
|
435 |
+
|
436 |
+
/* Make repository names clickable */
|
437 |
+
.gr-dataframe td:nth-child(1) {
|
438 |
+
cursor: pointer;
|
439 |
+
color: #667eea;
|
440 |
+
font-weight: 600;
|
441 |
+
transition: all 0.3s ease;
|
442 |
+
}
|
443 |
+
|
444 |
+
.gr-dataframe td:nth-child(1):hover {
|
445 |
+
background-color: rgba(102, 126, 234, 0.1);
|
446 |
+
color: #764ba2;
|
447 |
+
transform: scale(1.02);
|
448 |
+
}
|
449 |
+
|
450 |
+
/* Content columns - readable styling with scroll for long text */
|
451 |
+
.gr-dataframe td:nth-child(2),
|
452 |
+
.gr-dataframe td:nth-child(3),
|
453 |
+
.gr-dataframe td:nth-child(4),
|
454 |
+
.gr-dataframe td:nth-child(5) {
|
455 |
+
cursor: default;
|
456 |
+
font-size: 0.9rem;
|
457 |
+
}
|
458 |
+
|
459 |
+
.gr-dataframe tbody tr:hover {
|
460 |
+
background-color: rgba(102, 126, 234, 0.05);
|
461 |
+
}
|
462 |
+
|
463 |
+
/* JavaScript for auto-scroll to top on tab change */
|
464 |
+
<script>
|
465 |
+
document.addEventListener('DOMContentLoaded', function() {
|
466 |
+
// Function to scroll to top
|
467 |
+
function scrollToTop() {
|
468 |
+
window.scrollTo({
|
469 |
+
top: 0,
|
470 |
+
behavior: 'smooth'
|
471 |
+
});
|
472 |
+
}
|
473 |
+
|
474 |
+
// Observer for tab changes
|
475 |
+
const observer = new MutationObserver(function(mutations) {
|
476 |
+
mutations.forEach(function(mutation) {
|
477 |
+
if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
|
478 |
+
const target = mutation.target;
|
479 |
+
if (target.classList && target.classList.contains('selected')) {
|
480 |
+
// Tab was selected, scroll to top
|
481 |
+
setTimeout(scrollToTop, 100);
|
482 |
+
}
|
483 |
+
}
|
484 |
+
});
|
485 |
+
});
|
486 |
+
|
487 |
+
// Observe tab navigation buttons
|
488 |
+
const tabButtons = document.querySelectorAll('.gr-tab-nav button');
|
489 |
+
tabButtons.forEach(button => {
|
490 |
+
observer.observe(button, { attributes: true });
|
491 |
+
|
492 |
+
// Also add click listener for immediate scroll
|
493 |
+
button.addEventListener('click', function() {
|
494 |
+
setTimeout(scrollToTop, 150);
|
495 |
+
});
|
496 |
+
});
|
497 |
+
|
498 |
+
// Enhanced listener for programmatic tab changes (button-triggered navigation)
|
499 |
+
let lastSelectedTab = null;
|
500 |
+
const checkInterval = setInterval(function() {
|
501 |
+
const currentSelectedTab = document.querySelector('.gr-tab-nav button.selected');
|
502 |
+
if (currentSelectedTab && currentSelectedTab !== lastSelectedTab) {
|
503 |
+
lastSelectedTab = currentSelectedTab;
|
504 |
+
setTimeout(scrollToTop, 100);
|
505 |
+
}
|
506 |
+
}, 100);
|
507 |
+
|
508 |
+
// Additional scroll trigger for repo explorer navigation
|
509 |
+
window.addEventListener('repoExplorerNavigation', function() {
|
510 |
+
setTimeout(scrollToTop, 200);
|
511 |
+
});
|
512 |
+
|
513 |
+
// Watch for specific tab transitions to repo explorer
|
514 |
+
const repoExplorerObserver = new MutationObserver(function(mutations) {
|
515 |
+
mutations.forEach(function(mutation) {
|
516 |
+
if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
|
517 |
+
const target = mutation.target;
|
518 |
+
if (target.textContent && target.textContent.includes('🔍 Repo Explorer') && target.classList.contains('selected')) {
|
519 |
+
setTimeout(scrollToTop, 150);
|
520 |
+
}
|
521 |
+
}
|
522 |
+
});
|
523 |
+
});
|
524 |
+
|
525 |
+
// Start observing for repo explorer specific changes
|
526 |
+
setTimeout(function() {
|
527 |
+
const repoExplorerTab = Array.from(document.querySelectorAll('.gr-tab-nav button')).find(btn =>
|
528 |
+
btn.textContent && btn.textContent.includes('🔍 Repo Explorer')
|
529 |
+
);
|
530 |
+
if (repoExplorerTab) {
|
531 |
+
repoExplorerObserver.observe(repoExplorerTab, { attributes: true });
|
532 |
+
}
|
533 |
+
}, 1000);
|
534 |
+
});
|
535 |
+
</script>
|
536 |
+
"""
|
537 |
+
|
538 |
+
with gr.Blocks(
|
539 |
+
theme=gr.themes.Soft(
|
540 |
+
primary_hue="blue",
|
541 |
+
secondary_hue="purple",
|
542 |
+
neutral_hue="gray",
|
543 |
+
font=["Inter", "system-ui", "sans-serif"]
|
544 |
+
),
|
545 |
+
css=css,
|
546 |
+
title="🚀 HF Repo Analyzer"
|
547 |
+
) as app:
|
548 |
+
|
549 |
+
# --- State Management ---
|
550 |
+
# Using simple, separate state objects for robustness.
|
551 |
+
repo_ids_state = gr.State([])
|
552 |
+
current_repo_idx_state = gr.State(0)
|
553 |
+
user_requirements_state = gr.State("") # Store user requirements from chatbot
|
554 |
+
loaded_repo_content_state = gr.State("") # Store loaded repository content
|
555 |
+
current_repo_id_state = gr.State("") # Store current repository ID
|
556 |
+
selected_repo_id_state = gr.State("") # Store selected repository ID for modal actions
|
557 |
+
|
558 |
+
gr.Markdown(
|
559 |
+
"""
|
560 |
+
<div style="text-align: center; padding: 40px 20px; background: rgba(255, 255, 255, 0.1); border-radius: 20px; margin: 20px auto; max-width: 900px; backdrop-filter: blur(10px);">
|
561 |
+
<h1 style="font-size: 3.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
|
562 |
+
🚀 HF Repo Analyzer
|
563 |
+
</h1>
|
564 |
+
<p style="font-size: 1.3rem; color: rgba(255, 255, 255, 0.9); margin: 16px 0 0 0; font-weight: 400; line-height: 1.6;">
|
565 |
+
Discover, analyze, and evaluate Hugging Face repositories with AI-powered insights
|
566 |
+
</p>
|
567 |
+
<div style="height: 4px; width: 80px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 24px auto; border-radius: 2px;"></div>
|
568 |
+
</div>
|
569 |
+
"""
|
570 |
+
)
|
571 |
+
|
572 |
+
# Global Reset Button - visible on all tabs
|
573 |
+
with gr.Row():
|
574 |
+
with gr.Column(scale=4):
|
575 |
+
pass
|
576 |
+
with gr.Column(scale=1):
|
577 |
+
reset_all_btn = gr.Button("🔄 Reset Everything", variant="stop", size="lg")
|
578 |
+
with gr.Column(scale=1):
|
579 |
+
pass
|
580 |
+
|
581 |
+
with gr.Tabs() as tabs:
|
582 |
+
# --- Input Tab ---
|
583 |
+
with gr.TabItem("📝 Input & Search", id="input_tab"):
|
584 |
+
with gr.Row(equal_height=True):
|
585 |
+
with gr.Column(scale=1):
|
586 |
+
gr.Markdown("### 📁 Repository IDs")
|
587 |
+
repo_id_input = gr.Textbox(
|
588 |
+
label="Repository IDs",
|
589 |
+
lines=8,
|
590 |
+
placeholder="microsoft/DialoGPT-medium\nopenai/whisper\nhuggingface/transformers",
|
591 |
+
info="Enter repo IDs separated by commas or new lines"
|
592 |
+
)
|
593 |
+
submit_repo_btn = gr.Button("🚀 Submit Repositories", variant="primary", size="lg")
|
594 |
+
|
595 |
+
with gr.Column(scale=1):
|
596 |
+
gr.Markdown("### 🔍 Keyword Search")
|
597 |
+
keyword_input = gr.Textbox(
|
598 |
+
label="Search Keywords",
|
599 |
+
lines=8,
|
600 |
+
placeholder="text generation\nimage classification\nsentiment analysis",
|
601 |
+
info="Enter keywords to find relevant repositories"
|
602 |
+
)
|
603 |
+
search_btn = gr.Button("🔎 Search Repositories", variant="primary", size="lg")
|
604 |
+
|
605 |
+
status_box_input = gr.Textbox(label="📊 Status", interactive=False, lines=2)
|
606 |
+
|
607 |
+
# --- Analysis Tab ---
|
608 |
+
with gr.TabItem("🔬 Analysis", id="analysis_tab"):
|
609 |
+
gr.Markdown("### 🧪 Repository Analysis Engine")
|
610 |
+
|
611 |
+
# Display current user requirements
|
612 |
+
with gr.Row():
|
613 |
+
current_requirements_display = gr.Textbox(
|
614 |
+
label="📋 Current User Requirements",
|
615 |
+
interactive=False,
|
616 |
+
lines=3,
|
617 |
+
info="Requirements extracted from AI chat conversation for relevance rating"
|
618 |
+
)
|
619 |
+
|
620 |
+
with gr.Row():
|
621 |
+
analyze_all_btn = gr.Button("🚀 Analyze All Repositories", variant="primary", size="lg", scale=1)
|
622 |
+
with gr.Column(scale=2):
|
623 |
+
status_box_analysis = gr.Textbox(label="📈 Analysis Status", interactive=False, lines=2)
|
624 |
+
|
625 |
+
# Progress bar for batch analysis
|
626 |
+
with gr.Row():
|
627 |
+
analysis_progress = gr.Progress()
|
628 |
+
# progress_display = gr.Textbox(
|
629 |
+
# label="📊 Batch Analysis Progress",
|
630 |
+
# interactive=False,
|
631 |
+
# lines=2,
|
632 |
+
# visible=False,
|
633 |
+
# info="Shows progress when analyzing all repositories"
|
634 |
+
# )
|
635 |
+
|
636 |
+
with gr.Row(equal_height=True):
|
637 |
+
# with gr.Column():
|
638 |
+
# content_output = gr.Textbox(
|
639 |
+
# label="📄 Repository Content",
|
640 |
+
# lines=20,
|
641 |
+
# show_copy_button=True,
|
642 |
+
# info="Raw content extracted from the repository"
|
643 |
+
# )
|
644 |
+
# with gr.Column():
|
645 |
+
# summary_output = gr.Textbox(
|
646 |
+
# label="🎯 AI Analysis Summary",
|
647 |
+
# lines=20,
|
648 |
+
# show_copy_button=True,
|
649 |
+
# info="Detailed analysis and insights from AI"
|
650 |
+
# )
|
651 |
+
pass
|
652 |
+
|
653 |
+
gr.Markdown("### 📊 Results Dashboard")
|
654 |
+
|
655 |
+
# Top 3 Most Relevant Repositories (initially hidden)
|
656 |
+
with gr.Column(visible=False) as top_repos_section:
|
657 |
+
gr.Markdown("### 🏆 Top 3 Most Relevant Repositories")
|
658 |
+
gr.Markdown("🎯 **These are the highest-rated repositories based on your requirements:**")
|
659 |
+
top_repos_df = gr.Dataframe(
|
660 |
+
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
661 |
+
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
662 |
+
wrap=True,
|
663 |
+
interactive=False
|
664 |
+
)
|
665 |
+
|
666 |
+
gr.Markdown("💡 **Tip:** Full text is displayed directly in the table. Click on repository names to explore or visit them!")
|
667 |
+
|
668 |
+
# Text expansion modal for showing full content (kept for backwards compatibility)
|
669 |
+
with gr.Row():
|
670 |
+
with gr.Column():
|
671 |
+
text_expansion_modal = gr.Column(visible=False)
|
672 |
+
with text_expansion_modal:
|
673 |
+
gr.Markdown("### 📄 Full Content View")
|
674 |
+
expanded_content_title = gr.Textbox(
|
675 |
+
label="Content Type",
|
676 |
+
interactive=False,
|
677 |
+
info="Full text content for the selected field"
|
678 |
+
)
|
679 |
+
expanded_content_text = gr.Textbox(
|
680 |
+
label="Full Text",
|
681 |
+
lines=10,
|
682 |
+
interactive=False,
|
683 |
+
show_copy_button=True,
|
684 |
+
info="Complete untruncated content"
|
685 |
+
)
|
686 |
+
close_text_modal_btn = gr.Button("❌ Close", size="lg")
|
687 |
+
|
688 |
+
# Modal popup for repository action selection
|
689 |
+
with gr.Row():
|
690 |
+
with gr.Column():
|
691 |
+
repo_action_modal = gr.Column(visible=False)
|
692 |
+
with repo_action_modal:
|
693 |
+
gr.Markdown("### 🔗 Repository Actions")
|
694 |
+
selected_repo_display = gr.Textbox(
|
695 |
+
label="Selected Repository",
|
696 |
+
interactive=False,
|
697 |
+
info="Choose what you'd like to do with this repository"
|
698 |
+
)
|
699 |
+
with gr.Row():
|
700 |
+
visit_repo_btn = gr.Button("🌐 Visit Hugging Face Space", variant="primary", size="lg")
|
701 |
+
explore_repo_btn = gr.Button("🔍 Open in Repo Explorer", variant="secondary", size="lg")
|
702 |
+
cancel_modal_btn = gr.Button("❌ Cancel", size="lg")
|
703 |
+
|
704 |
+
gr.Markdown("### 📋 All Analysis Results")
|
705 |
+
df_output = gr.Dataframe(
|
706 |
+
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
707 |
+
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
708 |
+
wrap=True,
|
709 |
+
interactive=False
|
710 |
+
)
|
711 |
+
|
712 |
+
# --- Chatbot Tab ---
|
713 |
+
with gr.TabItem("🤖 AI Assistant", id="chatbot_tab"):
|
714 |
+
gr.Markdown("### 💬 Intelligent Repository Discovery")
|
715 |
+
|
716 |
+
chatbot = gr.Chatbot(
|
717 |
+
label="🤖 AI Assistant",
|
718 |
+
height=450,
|
719 |
+
type="messages",
|
720 |
+
avatar_images=(
|
721 |
+
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
722 |
+
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
|
723 |
+
),
|
724 |
+
show_copy_button=True
|
725 |
+
)
|
726 |
+
|
727 |
+
with gr.Row():
|
728 |
+
msg_input = gr.Textbox(
|
729 |
+
label="💭 Your Message",
|
730 |
+
placeholder="Tell me about your ideal repository...",
|
731 |
+
lines=1,
|
732 |
+
scale=4,
|
733 |
+
info="Describe what you're looking for"
|
734 |
+
)
|
735 |
+
send_btn = gr.Button("📤 Send", variant="primary", scale=1)
|
736 |
+
end_chat_btn = gr.Button("🎯 Extract Keywords", scale=1)
|
737 |
+
use_keywords_btn = gr.Button("🔎 Search Now", variant="primary", scale=1)
|
738 |
+
|
739 |
+
with gr.Row():
|
740 |
+
with gr.Column():
|
741 |
+
extracted_keywords_output = gr.Textbox(
|
742 |
+
label="🏷️ Extracted Keywords",
|
743 |
+
interactive=False,
|
744 |
+
show_copy_button=True,
|
745 |
+
info="AI-generated search terms from our conversation"
|
746 |
+
)
|
747 |
+
with gr.Column():
|
748 |
+
status_box_chatbot = gr.Textbox(
|
749 |
+
label="📊 Chat Status",
|
750 |
+
interactive=False,
|
751 |
+
info="Current conversation status"
|
752 |
+
)
|
753 |
+
|
754 |
+
# --- Repo Explorer Tab ---
|
755 |
+
with gr.TabItem("🔍 Repo Explorer", id="repo_explorer_tab"):
|
756 |
+
repo_components, repo_states = create_repo_explorer_tab()
|
757 |
+
|
758 |
+
# --- Footer ---
|
759 |
+
gr.Markdown(
|
760 |
+
"""
|
761 |
+
<div style="text-align: center; padding: 30px 20px; margin-top: 40px; background: rgba(255, 255, 255, 0.1); border-radius: 16px; backdrop-filter: blur(10px);">
|
762 |
+
<p style="margin: 0; color: rgba(255, 255, 255, 0.8); font-size: 0.95rem; font-weight: 500;">
|
763 |
+
🚀 Powered by <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Gradio</span>
|
764 |
+
& <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Hugging Face</span>
|
765 |
+
</p>
|
766 |
+
<div style="height: 2px; width: 60px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 16px auto; border-radius: 1px;"></div>
|
767 |
+
</div>
|
768 |
+
"""
|
769 |
+
)
|
770 |
+
|
771 |
+
# --- Event Handler Functions ---
|
772 |
+
|
773 |
+
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
774 |
+
"""Processes submitted repo IDs, updates state, and prepares for analysis."""
|
775 |
+
if not text:
|
776 |
+
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
|
777 |
+
|
778 |
+
repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
|
779 |
+
write_repos_to_csv(repo_ids)
|
780 |
+
df = format_dataframe_for_display(read_csv_to_dataframe())
|
781 |
+
status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
|
782 |
+
return repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
783 |
+
|
784 |
+
def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
785 |
+
"""Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
|
786 |
+
if not keywords:
|
787 |
+
return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
|
788 |
+
|
789 |
+
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
|
790 |
+
repo_ids = []
|
791 |
+
for kw in keyword_list:
|
792 |
+
repo_ids.extend(search_top_spaces(kw, limit=5))
|
793 |
+
|
794 |
+
unique_repo_ids = list(dict.fromkeys(repo_ids))
|
795 |
+
write_repos_to_csv(unique_repo_ids)
|
796 |
+
df = format_dataframe_for_display(read_csv_to_dataframe())
|
797 |
+
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
|
798 |
+
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
799 |
+
|
800 |
+
def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
|
801 |
+
"""Extract user requirements from chatbot conversation."""
|
802 |
+
if not history:
|
803 |
+
return ""
|
804 |
+
|
805 |
+
user_messages = []
|
806 |
+
for msg in history:
|
807 |
+
if msg.get('role') == 'user':
|
808 |
+
user_messages.append(msg.get('content', ''))
|
809 |
+
|
810 |
+
if not user_messages:
|
811 |
+
return ""
|
812 |
+
|
813 |
+
# Combine all user messages as requirements
|
814 |
+
requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
|
815 |
+
return requirements
|
816 |
+
|
817 |
+
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
|
818 |
+
"""Appends the user's message to the history, preparing for the bot's response."""
|
819 |
+
# Initialize chatbot with welcome message if empty
|
820 |
+
if not history:
|
821 |
+
history = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
|
822 |
+
|
823 |
+
if user_message:
|
824 |
+
history.append({"role": "user", "content": user_message})
|
825 |
+
return history, ""
|
826 |
+
|
827 |
+
def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
828 |
+
"""Generates and appends the bot's response using the compatible history format."""
|
829 |
+
if not history or history[-1]["role"] != "user":
|
830 |
+
return history
|
831 |
+
|
832 |
+
user_message = history[-1]["content"]
|
833 |
+
# Convert all messages *before* the last user message into tuples for the API
|
834 |
+
tuple_history_for_api = convert_messages_to_tuples(history[:-1])
|
835 |
+
|
836 |
+
response = chat_with_user(user_message, tuple_history_for_api)
|
837 |
+
history.append({"role": "assistant", "content": response})
|
838 |
+
return history
|
839 |
+
|
840 |
+
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
|
841 |
+
"""Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
|
842 |
+
if not history:
|
843 |
+
return "", "Status: Chat is empty, nothing to analyze.", ""
|
844 |
+
|
845 |
+
# Convert the full, valid history for the extraction logic
|
846 |
+
tuple_history = convert_messages_to_tuples(history)
|
847 |
+
if not tuple_history:
|
848 |
+
return "", "Status: No completed conversations to analyze.", ""
|
849 |
+
|
850 |
+
# Get raw keywords string from the LLM
|
851 |
+
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
|
852 |
+
|
853 |
+
# Sanitize the LLM output to extract only keyword-like parts.
|
854 |
+
# A keyword can contain letters, numbers, underscores, spaces, and hyphens.
|
855 |
+
cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
|
856 |
+
|
857 |
+
# Trim whitespace from each found keyword and filter out any empty strings
|
858 |
+
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
|
859 |
+
|
860 |
+
if not cleaned_keywords:
|
861 |
+
return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'", ""
|
862 |
+
|
863 |
+
# Join them into a clean, comma-separated string for the search tool
|
864 |
+
final_keywords_str = ", ".join(cleaned_keywords)
|
865 |
+
|
866 |
+
# Extract user requirements for analysis
|
867 |
+
user_requirements = extract_user_requirements_from_chat(history)
|
868 |
+
|
869 |
+
status = "Status: Keywords extracted. User requirements saved for analysis."
|
870 |
+
return final_keywords_str, status, user_requirements
|
871 |
+
|
872 |
+
def handle_dataframe_select(evt: gr.SelectData, df_data) -> Tuple[str, Any, Any, str, str, Any, str]:
|
873 |
+
"""Handle dataframe row selection - only repo ID (column 0) shows modal since full text is now displayed directly."""
|
874 |
+
print(f"DEBUG: Selection event triggered!")
|
875 |
+
print(f"DEBUG: evt = {evt}")
|
876 |
+
print(f"DEBUG: df_data type = {type(df_data)}")
|
877 |
+
|
878 |
+
if evt is None:
|
879 |
+
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
880 |
+
|
881 |
+
try:
|
882 |
+
# Get the selected row and column from the event
|
883 |
+
row_idx = evt.index[0]
|
884 |
+
col_idx = evt.index[1]
|
885 |
+
print(f"DEBUG: Selected row {row_idx}, column {col_idx}")
|
886 |
+
|
887 |
+
# Handle pandas DataFrame
|
888 |
+
if isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data):
|
889 |
+
|
890 |
+
if col_idx == 0: # Repository name column - show action modal
|
891 |
+
repo_id = df_data.iloc[row_idx, 0]
|
892 |
+
print(f"DEBUG: Extracted repo_id = '{repo_id}'")
|
893 |
+
|
894 |
+
if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan':
|
895 |
+
clean_repo_id = str(repo_id).strip()
|
896 |
+
logger.info(f"Showing modal for repository: {clean_repo_id}")
|
897 |
+
return clean_repo_id, gr.update(visible=True), gr.update(), "", "", gr.update(visible=False), clean_repo_id
|
898 |
+
|
899 |
+
# For content columns (1,2,3) and relevance (4), do nothing since full text is shown directly
|
900 |
+
else:
|
901 |
+
print(f"DEBUG: Clicked on column {col_idx}, full text already shown in table")
|
902 |
+
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
903 |
+
else:
|
904 |
+
print(f"DEBUG: df_data is not a DataFrame or row_idx {row_idx} out of range")
|
905 |
+
|
906 |
+
except Exception as e:
|
907 |
+
print(f"DEBUG: Exception occurred: {e}")
|
908 |
+
logger.error(f"Error handling dataframe selection: {e}")
|
909 |
+
|
910 |
+
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
911 |
+
|
912 |
+
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
|
913 |
+
"""Analyzes all repositories in the CSV file with progress tracking."""
|
914 |
+
if not repo_ids:
|
915 |
+
return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first.", pd.DataFrame(), gr.update(visible=False)
|
916 |
+
|
917 |
+
total_repos = len(repo_ids)
|
918 |
+
|
919 |
+
try:
|
920 |
+
# Start the progress tracking
|
921 |
+
progress(0, desc="Initializing batch analysis...")
|
922 |
+
|
923 |
+
successful_analyses = 0
|
924 |
+
failed_analyses = 0
|
925 |
+
csv_update_failures = 0
|
926 |
+
|
927 |
+
for i, repo_id in enumerate(repo_ids):
|
928 |
+
# Update progress
|
929 |
+
progress_percent = (i / total_repos)
|
930 |
+
progress(progress_percent, desc=f"Analyzing {repo_id} ({i+1}/{total_repos})")
|
931 |
+
|
932 |
+
try:
|
933 |
+
logger.info(f"Batch analysis: Processing {repo_id} ({i+1}/{total_repos})")
|
934 |
+
|
935 |
+
# Analyze the repository
|
936 |
+
content, summary, df = analyze_and_update_single_repo(repo_id, user_requirements)
|
937 |
+
|
938 |
+
# Verify the CSV was actually updated by checking if the repo has analysis data
|
939 |
+
updated_df = read_csv_to_dataframe()
|
940 |
+
repo_updated = False
|
941 |
+
|
942 |
+
for idx, row in updated_df.iterrows():
|
943 |
+
if row["repo id"] == repo_id:
|
944 |
+
# Check if any analysis field is populated
|
945 |
+
if (row.get("strength", "").strip() or
|
946 |
+
row.get("weaknesses", "").strip() or
|
947 |
+
row.get("speciality", "").strip() or
|
948 |
+
row.get("relevance rating", "").strip()):
|
949 |
+
repo_updated = True
|
950 |
+
break
|
951 |
+
|
952 |
+
if repo_updated:
|
953 |
+
successful_analyses += 1
|
954 |
+
else:
|
955 |
+
# CSV update failed - try once more
|
956 |
+
logger.warning(f"CSV update failed for {repo_id}, attempting retry...")
|
957 |
+
time.sleep(0.5) # Wait a bit longer
|
958 |
+
|
959 |
+
# Force re-read and re-update
|
960 |
+
df_retry = read_csv_to_dataframe()
|
961 |
+
retry_success = False
|
962 |
+
|
963 |
+
# Re-parse the analysis if available
|
964 |
+
if summary and "JSON extraction: SUCCESS" in summary:
|
965 |
+
# Extract the analysis from summary - this is a fallback
|
966 |
+
logger.info(f"Attempting to re-update CSV for {repo_id}")
|
967 |
+
content_retry, summary_retry, df_retry = analyze_and_update_single_repo(repo_id, user_requirements)
|
968 |
+
|
969 |
+
# Check again
|
970 |
+
final_df = read_csv_to_dataframe()
|
971 |
+
for idx, row in final_df.iterrows():
|
972 |
+
if row["repo id"] == repo_id:
|
973 |
+
if (row.get("strength", "").strip() or
|
974 |
+
row.get("weaknesses", "").strip() or
|
975 |
+
row.get("speciality", "").strip() or
|
976 |
+
row.get("relevance rating", "").strip()):
|
977 |
+
retry_success = True
|
978 |
+
break
|
979 |
+
|
980 |
+
if retry_success:
|
981 |
+
successful_analyses += 1
|
982 |
+
else:
|
983 |
+
csv_update_failures += 1
|
984 |
+
|
985 |
+
# Longer delay to prevent file conflicts
|
986 |
+
time.sleep(0.3)
|
987 |
+
|
988 |
+
except Exception as e:
|
989 |
+
logger.error(f"Error analyzing {repo_id}: {e}")
|
990 |
+
failed_analyses += 1
|
991 |
+
# Still wait to prevent rapid failures
|
992 |
+
time.sleep(0.2)
|
993 |
+
|
994 |
+
# Complete the progress
|
995 |
+
progress(1.0, desc="Batch analysis completed!")
|
996 |
+
|
997 |
+
# Get final updated dataframe
|
998 |
+
updated_df = read_csv_to_dataframe()
|
999 |
+
|
1000 |
+
# Filter out rows with no analysis data for consistent display with top 3
|
1001 |
+
analyzed_df = updated_df.copy()
|
1002 |
+
analyzed_df = analyzed_df[
|
1003 |
+
(analyzed_df['strength'].str.strip() != '') |
|
1004 |
+
(analyzed_df['weaknesses'].str.strip() != '') |
|
1005 |
+
(analyzed_df['speciality'].str.strip() != '') |
|
1006 |
+
(analyzed_df['relevance rating'].str.strip() != '')
|
1007 |
+
]
|
1008 |
+
|
1009 |
+
# Get top 3 most relevant repositories using full data
|
1010 |
+
top_repos = get_top_relevant_repos(updated_df, user_requirements, top_n=3)
|
1011 |
+
|
1012 |
+
# Final status with detailed breakdown
|
1013 |
+
final_status = f"🎉 Batch Analysis Complete!\n✅ Successful: {successful_analyses}/{total_repos}\n❌ Failed: {failed_analyses}/{total_repos}"
|
1014 |
+
if csv_update_failures > 0:
|
1015 |
+
final_status += f"\n⚠️ CSV Update Issues: {csv_update_failures}/{total_repos}"
|
1016 |
+
|
1017 |
+
# Add top repos info if available
|
1018 |
+
if not top_repos.empty:
|
1019 |
+
final_status += f"\n\n🏆 Top {len(top_repos)} most relevant repositories selected!"
|
1020 |
+
|
1021 |
+
# Show top repos section if we have results
|
1022 |
+
show_top_section = gr.update(visible=not top_repos.empty)
|
1023 |
+
|
1024 |
+
logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues")
|
1025 |
+
return format_dataframe_for_display(analyzed_df), final_status, format_dataframe_for_display(top_repos), show_top_section
|
1026 |
+
|
1027 |
+
except Exception as e:
|
1028 |
+
logger.error(f"Error in batch analysis: {e}")
|
1029 |
+
error_status = f"❌ Batch analysis failed: {e}"
|
1030 |
+
return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False)
|
1031 |
+
|
1032 |
+
def handle_visit_repo(repo_id: str) -> Tuple[Any, str]:
|
1033 |
+
"""Handle visiting the Hugging Face Space for the repository."""
|
1034 |
+
if repo_id and repo_id.strip():
|
1035 |
+
hf_url = f"https://huggingface.co/spaces/{repo_id.strip()}"
|
1036 |
+
logger.info(f"User chose to visit: {hf_url}")
|
1037 |
+
return gr.update(visible=False), hf_url
|
1038 |
+
return gr.update(visible=False), ""
|
1039 |
+
|
1040 |
+
def handle_explore_repo(selected_repo_id: str) -> Tuple[Any, Any, Any]:
|
1041 |
+
"""Handle navigating to the repo explorer and populate the repo ID."""
|
1042 |
+
logger.info(f"DEBUG: handle_explore_repo called with selected_repo_id: '{selected_repo_id}'")
|
1043 |
+
logger.info(f"DEBUG: selected_repo_id type: {type(selected_repo_id)}")
|
1044 |
+
logger.info(f"DEBUG: selected_repo_id length: {len(selected_repo_id) if selected_repo_id else 'None'}")
|
1045 |
+
|
1046 |
+
if selected_repo_id and selected_repo_id.strip() and selected_repo_id.strip() != 'nan':
|
1047 |
+
clean_repo_id = selected_repo_id.strip()
|
1048 |
+
return (
|
1049 |
+
gr.update(visible=False), # close modal
|
1050 |
+
gr.update(selected="repo_explorer_tab"), # switch tab
|
1051 |
+
gr.update(value=clean_repo_id) # populate repo explorer input
|
1052 |
+
)
|
1053 |
+
else:
|
1054 |
+
return (
|
1055 |
+
gr.update(visible=False), # close modal
|
1056 |
+
gr.update(selected="repo_explorer_tab"), # switch tab
|
1057 |
+
gr.update() # don't change repo explorer input
|
1058 |
+
)
|
1059 |
+
|
1060 |
+
def handle_cancel_modal() -> Any:
|
1061 |
+
"""Handle closing the modal."""
|
1062 |
+
return gr.update(visible=False)
|
1063 |
+
|
1064 |
+
def handle_close_text_modal() -> Any:
|
1065 |
+
"""Handle closing the text expansion modal."""
|
1066 |
+
return gr.update(visible=False)
|
1067 |
+
|
1068 |
+
def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, Any, Any, List[Dict[str, str]], str, str, str]:
|
1069 |
+
"""Reset everything to initial state - clear all data, CSV, and UI components."""
|
1070 |
+
try:
|
1071 |
+
# Clear the CSV file
|
1072 |
+
if os.path.exists(CSV_FILE):
|
1073 |
+
os.remove(CSV_FILE)
|
1074 |
+
logger.info("CSV file deleted for reset")
|
1075 |
+
|
1076 |
+
# Create empty dataframe
|
1077 |
+
empty_df = pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
1078 |
+
|
1079 |
+
# Reset state variables
|
1080 |
+
repo_ids_reset = []
|
1081 |
+
current_idx_reset = 0
|
1082 |
+
user_requirements_reset = ""
|
1083 |
+
|
1084 |
+
# Reset status
|
1085 |
+
status_reset = "Status: Everything has been reset. Ready to start fresh!"
|
1086 |
+
|
1087 |
+
# Reset UI components
|
1088 |
+
current_requirements_reset = "No requirements extracted yet."
|
1089 |
+
extracted_keywords_reset = ""
|
1090 |
+
|
1091 |
+
# Reset chatbot to initial message
|
1092 |
+
chatbot_reset = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
|
1093 |
+
|
1094 |
+
logger.info("Complete system reset performed")
|
1095 |
+
|
1096 |
+
return (
|
1097 |
+
repo_ids_reset, # repo_ids_state
|
1098 |
+
current_idx_reset, # current_repo_idx_state
|
1099 |
+
user_requirements_reset, # user_requirements_state
|
1100 |
+
empty_df, # df_output
|
1101 |
+
empty_df, # top_repos_df
|
1102 |
+
gr.update(visible=False), # top_repos_section
|
1103 |
+
gr.update(visible=False), # repo_action_modal
|
1104 |
+
gr.update(visible=False), # text_expansion_modal
|
1105 |
+
chatbot_reset, # chatbot
|
1106 |
+
status_reset, # status_box_analysis
|
1107 |
+
current_requirements_reset, # current_requirements_display
|
1108 |
+
extracted_keywords_reset # extracted_keywords_output
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
except Exception as e:
|
1112 |
+
logger.error(f"Error during reset: {e}")
|
1113 |
+
error_status = f"Reset failed: {e}"
|
1114 |
+
return (
|
1115 |
+
[], # repo_ids_state
|
1116 |
+
0, # current_repo_idx_state
|
1117 |
+
"", # user_requirements_state
|
1118 |
+
pd.DataFrame(), # df_output
|
1119 |
+
pd.DataFrame(), # top_repos_df
|
1120 |
+
gr.update(visible=False), # top_repos_section
|
1121 |
+
gr.update(visible=False), # repo_action_modal
|
1122 |
+
gr.update(visible=False), # text_expansion_modal
|
1123 |
+
[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot
|
1124 |
+
error_status, # status_box_analysis
|
1125 |
+
"No requirements extracted yet.", # current_requirements_display
|
1126 |
+
"" # extracted_keywords_output
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
# --- Component Event Wiring ---
|
1130 |
+
|
1131 |
+
# Initialize chatbot with welcome message on app load
|
1132 |
+
app.load(
|
1133 |
+
fn=lambda: [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
|
1134 |
+
outputs=[chatbot]
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
# Input Tab
|
1138 |
+
submit_repo_btn.click(
|
1139 |
+
fn=handle_repo_id_submission,
|
1140 |
+
inputs=[repo_id_input],
|
1141 |
+
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1142 |
+
)
|
1143 |
+
search_btn.click(
|
1144 |
+
fn=handle_keyword_search,
|
1145 |
+
inputs=[keyword_input],
|
1146 |
+
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
# Analysis Tab
|
1150 |
+
analyze_all_btn.click(
|
1151 |
+
fn=lambda: None, # No need to show progress display since it's commented out
|
1152 |
+
outputs=[]
|
1153 |
+
).then(
|
1154 |
+
fn=handle_analyze_all_repos,
|
1155 |
+
inputs=[repo_ids_state, user_requirements_state],
|
1156 |
+
outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
# Chatbot Tab
|
1160 |
+
msg_input.submit(
|
1161 |
+
fn=handle_user_message,
|
1162 |
+
inputs=[msg_input, chatbot],
|
1163 |
+
outputs=[chatbot, msg_input]
|
1164 |
+
).then(
|
1165 |
+
fn=handle_bot_response,
|
1166 |
+
inputs=[chatbot],
|
1167 |
+
outputs=[chatbot]
|
1168 |
+
)
|
1169 |
+
send_btn.click(
|
1170 |
+
fn=handle_user_message,
|
1171 |
+
inputs=[msg_input, chatbot],
|
1172 |
+
outputs=[chatbot, msg_input]
|
1173 |
+
).then(
|
1174 |
+
fn=handle_bot_response,
|
1175 |
+
inputs=[chatbot],
|
1176 |
+
outputs=[chatbot]
|
1177 |
+
)
|
1178 |
+
end_chat_btn.click(
|
1179 |
+
fn=handle_end_chat,
|
1180 |
+
inputs=[chatbot],
|
1181 |
+
outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
|
1182 |
+
).then(
|
1183 |
+
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
1184 |
+
inputs=[user_requirements_state],
|
1185 |
+
outputs=[current_requirements_display]
|
1186 |
+
)
|
1187 |
+
use_keywords_btn.click(
|
1188 |
+
fn=handle_keyword_search,
|
1189 |
+
inputs=[extracted_keywords_output],
|
1190 |
+
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
# Repo Explorer Tab
|
1194 |
+
setup_repo_explorer_events(repo_components, repo_states)
|
1195 |
+
|
1196 |
+
# Modal button events
|
1197 |
+
visit_repo_btn.click(
|
1198 |
+
fn=handle_visit_repo,
|
1199 |
+
inputs=[selected_repo_display],
|
1200 |
+
outputs=[repo_action_modal, selected_repo_display],
|
1201 |
+
js="(repo_id) => { if(repo_id && repo_id.trim()) { window.open('https://huggingface.co/spaces/' + repo_id.trim(), '_blank'); } }"
|
1202 |
+
)
|
1203 |
+
explore_repo_btn.click(
|
1204 |
+
fn=handle_explore_repo,
|
1205 |
+
inputs=[selected_repo_id_state],
|
1206 |
+
outputs=[
|
1207 |
+
repo_action_modal,
|
1208 |
+
tabs,
|
1209 |
+
repo_components["repo_explorer_input"]
|
1210 |
+
],
|
1211 |
+
js="""(repo_id) => {
|
1212 |
+
console.log('DEBUG: Navigate to repo explorer for:', repo_id);
|
1213 |
+
setTimeout(() => {
|
1214 |
+
window.scrollTo({top: 0, behavior: 'smooth'});
|
1215 |
+
}, 200);
|
1216 |
+
}"""
|
1217 |
+
)
|
1218 |
+
cancel_modal_btn.click(
|
1219 |
+
fn=handle_cancel_modal,
|
1220 |
+
outputs=[repo_action_modal]
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
# Text expansion modal events
|
1224 |
+
close_text_modal_btn.click(
|
1225 |
+
fn=handle_close_text_modal,
|
1226 |
+
outputs=[text_expansion_modal]
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
# Add dataframe selection event
|
1230 |
+
df_output.select(
|
1231 |
+
fn=handle_dataframe_select,
|
1232 |
+
inputs=[df_output],
|
1233 |
+
outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal, selected_repo_id_state]
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
# Add selection event for top repositories dataframe too
|
1237 |
+
top_repos_df.select(
|
1238 |
+
fn=handle_dataframe_select,
|
1239 |
+
inputs=[top_repos_df],
|
1240 |
+
outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal, selected_repo_id_state]
|
1241 |
+
)
|
1242 |
+
|
1243 |
+
# Reset button event
|
1244 |
+
reset_all_btn.click(
|
1245 |
+
fn=handle_reset_everything,
|
1246 |
+
outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section, repo_action_modal, text_expansion_modal, chatbot, status_box_analysis, current_requirements_display, extracted_keywords_output]
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
return app
|
1250 |
+
|
1251 |
+
if __name__ == "__main__":
|
1252 |
+
app = create_ui()
|
1253 |
+
app.launch(debug=True)
|