Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,110 @@ CHATBOT_INITIAL_MESSAGE = "Hello! Please tell me about your ideal Hugging Face r
|
|
28 |
|
29 |
# --- Helper Functions (Logic) ---
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
32 |
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
|
33 |
try:
|
@@ -124,7 +228,7 @@ def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") ->
|
|
124 |
if not repo_found_in_df:
|
125 |
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
|
126 |
|
127 |
-
|
128 |
try:
|
129 |
df.to_csv(CSV_FILE, index=False)
|
130 |
# Force file system flush
|
@@ -432,6 +536,19 @@ def create_ui() -> gr.Blocks:
|
|
432 |
pass
|
433 |
|
434 |
gr.Markdown("### π Results Dashboard")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
gr.Markdown("π‘ **Tip:** Click on any repository name to explore it in detail!")
|
436 |
|
437 |
# Modal popup for repository action selection
|
@@ -450,6 +567,7 @@ def create_ui() -> gr.Blocks:
|
|
450 |
explore_repo_btn = gr.Button("π Open in Repo Explorer", variant="secondary", size="lg")
|
451 |
cancel_modal_btn = gr.Button("β Cancel", size="lg")
|
452 |
|
|
|
453 |
df_output = gr.Dataframe(
|
454 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
455 |
wrap=True,
|
@@ -514,7 +632,7 @@ def create_ui() -> gr.Blocks:
|
|
514 |
</div>
|
515 |
"""
|
516 |
)
|
517 |
-
|
518 |
# --- Event Handler Functions ---
|
519 |
|
520 |
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
@@ -677,10 +795,10 @@ def create_ui() -> gr.Blocks:
|
|
677 |
|
678 |
return "", gr.update(visible=False), gr.update()
|
679 |
|
680 |
-
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str]:
|
681 |
"""Analyzes all repositories in the CSV file with progress tracking."""
|
682 |
if not repo_ids:
|
683 |
-
return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first."
|
684 |
|
685 |
total_repos = len(repo_ids)
|
686 |
|
@@ -762,21 +880,31 @@ def create_ui() -> gr.Blocks:
|
|
762 |
# Complete the progress
|
763 |
progress(1.0, desc="Batch analysis completed!")
|
764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
# Final status with detailed breakdown
|
766 |
final_status = f"π Batch Analysis Complete!\nβ
Successful: {successful_analyses}/{total_repos}\nβ Failed: {failed_analyses}/{total_repos}"
|
767 |
if csv_update_failures > 0:
|
768 |
final_status += f"\nβ οΈ CSV Update Issues: {csv_update_failures}/{total_repos}"
|
769 |
|
770 |
-
#
|
771 |
-
|
|
|
|
|
|
|
|
|
772 |
|
773 |
logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues")
|
774 |
-
return updated_df, final_status
|
775 |
|
776 |
except Exception as e:
|
777 |
logger.error(f"Error in batch analysis: {e}")
|
778 |
error_status = f"β Batch analysis failed: {e}"
|
779 |
-
return read_csv_to_dataframe(), error_status
|
780 |
|
781 |
def handle_visit_repo(repo_id: str) -> Tuple[Any, str]:
|
782 |
"""Handle visiting the Hugging Face Space for the repository."""
|
@@ -829,7 +957,7 @@ def create_ui() -> gr.Blocks:
|
|
829 |
).then(
|
830 |
fn=handle_analyze_all_repos,
|
831 |
inputs=[repo_ids_state, user_requirements_state],
|
832 |
-
outputs=[df_output, status_box_analysis]
|
833 |
)
|
834 |
|
835 |
# Chatbot Tab
|
@@ -893,6 +1021,13 @@ def create_ui() -> gr.Blocks:
|
|
893 |
outputs=[selected_repo_display, repo_action_modal, tabs]
|
894 |
)
|
895 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
896 |
return app
|
897 |
|
898 |
if __name__ == "__main__":
|
|
|
28 |
|
29 |
# --- Helper Functions (Logic) ---
|
30 |
|
31 |
+
def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
|
32 |
+
"""
|
33 |
+
Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
|
34 |
+
"""
|
35 |
+
try:
|
36 |
+
if df.empty:
|
37 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
38 |
+
|
39 |
+
# Filter out rows with no analysis data
|
40 |
+
analyzed_df = df.copy()
|
41 |
+
analyzed_df = analyzed_df[
|
42 |
+
(analyzed_df['strength'].str.strip() != '') |
|
43 |
+
(analyzed_df['weaknesses'].str.strip() != '') |
|
44 |
+
(analyzed_df['speciality'].str.strip() != '') |
|
45 |
+
(analyzed_df['relevance rating'].str.strip() != '')
|
46 |
+
]
|
47 |
+
|
48 |
+
if analyzed_df.empty:
|
49 |
+
logger.warning("No analyzed repositories found for LLM selection")
|
50 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
51 |
+
|
52 |
+
# Create a prompt for the LLM
|
53 |
+
csv_data = ""
|
54 |
+
for idx, row in analyzed_df.iterrows():
|
55 |
+
csv_data += f"Repository: {row['repo id']}\n"
|
56 |
+
csv_data += f"Strengths: {row['strength']}\n"
|
57 |
+
csv_data += f"Weaknesses: {row['weaknesses']}\n"
|
58 |
+
csv_data += f"Speciality: {row['speciality']}\n"
|
59 |
+
csv_data += f"Relevance: {row['relevance rating']}\n\n"
|
60 |
+
|
61 |
+
user_context = user_requirements if user_requirements.strip() else "General repository recommendation"
|
62 |
+
|
63 |
+
prompt = f"""Based on the user's requirements and the analysis of repositories below, select the top {top_n} most relevant repositories.
|
64 |
+
|
65 |
+
User Requirements:
|
66 |
+
{user_context}
|
67 |
+
|
68 |
+
Repository Analysis Data:
|
69 |
+
{csv_data}
|
70 |
+
|
71 |
+
Please analyze all repositories and select the {top_n} most relevant ones based on:
|
72 |
+
1. How well they match the user's specific requirements
|
73 |
+
2. Their strengths and capabilities
|
74 |
+
3. Their relevance rating
|
75 |
+
4. Their speciality alignment with user needs
|
76 |
+
|
77 |
+
Return ONLY a JSON list of the repository IDs in order of relevance (most relevant first). Example format:
|
78 |
+
["repo1", "repo2", "repo3"]
|
79 |
+
|
80 |
+
Selected repositories:"""
|
81 |
+
|
82 |
+
try:
|
83 |
+
from openai import OpenAI
|
84 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
85 |
+
client.base_url = os.getenv("base_url")
|
86 |
+
|
87 |
+
response = client.chat.completions.create(
|
88 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
89 |
+
messages=[
|
90 |
+
{"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
|
91 |
+
{"role": "user", "content": prompt}
|
92 |
+
],
|
93 |
+
max_tokens=200,
|
94 |
+
temperature=0.3
|
95 |
+
)
|
96 |
+
|
97 |
+
llm_response = response.choices[0].message.content.strip()
|
98 |
+
logger.info(f"LLM response for top repos: {llm_response}")
|
99 |
+
|
100 |
+
# Extract JSON from response
|
101 |
+
import json
|
102 |
+
import re
|
103 |
+
|
104 |
+
# Try to find JSON array in the response
|
105 |
+
json_match = re.search(r'\[.*\]', llm_response)
|
106 |
+
if json_match:
|
107 |
+
selected_repos = json.loads(json_match.group())
|
108 |
+
logger.info(f"LLM selected repositories: {selected_repos}")
|
109 |
+
|
110 |
+
# Filter dataframe to only include selected repositories in order
|
111 |
+
top_repos_list = []
|
112 |
+
for repo_id in selected_repos[:top_n]:
|
113 |
+
matching_rows = analyzed_df[analyzed_df['repo id'] == repo_id]
|
114 |
+
if not matching_rows.empty:
|
115 |
+
top_repos_list.append(matching_rows.iloc[0])
|
116 |
+
|
117 |
+
if top_repos_list:
|
118 |
+
top_repos = pd.DataFrame(top_repos_list)
|
119 |
+
logger.info(f"Successfully selected {len(top_repos)} repositories using LLM")
|
120 |
+
return top_repos
|
121 |
+
|
122 |
+
# Fallback: if LLM response parsing fails, use first N analyzed repos
|
123 |
+
logger.warning("Failed to parse LLM response, using fallback selection")
|
124 |
+
return analyzed_df.head(top_n)
|
125 |
+
|
126 |
+
except Exception as llm_error:
|
127 |
+
logger.error(f"LLM selection failed: {llm_error}")
|
128 |
+
# Fallback: return first N repositories with analysis data
|
129 |
+
return analyzed_df.head(top_n)
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Error in LLM-based repo selection: {e}")
|
133 |
+
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
134 |
+
|
135 |
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
136 |
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
|
137 |
try:
|
|
|
228 |
if not repo_found_in_df:
|
229 |
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
|
230 |
|
231 |
+
# Write CSV with better error handling and flushing
|
232 |
try:
|
233 |
df.to_csv(CSV_FILE, index=False)
|
234 |
# Force file system flush
|
|
|
536 |
pass
|
537 |
|
538 |
gr.Markdown("### π Results Dashboard")
|
539 |
+
|
540 |
+
# Top 3 Most Relevant Repositories (initially hidden)
|
541 |
+
with gr.Column(visible=False) as top_repos_section:
|
542 |
+
gr.Markdown("### π Top 3 Most Relevant Repositories")
|
543 |
+
gr.Markdown("π― **These are the highest-rated repositories based on your requirements:**")
|
544 |
+
top_repos_df = gr.Dataframe(
|
545 |
+
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
546 |
+
wrap=True,
|
547 |
+
interactive=False,
|
548 |
+
height=200,
|
549 |
+
info="Click on any repository name to explore or visit"
|
550 |
+
)
|
551 |
+
|
552 |
gr.Markdown("π‘ **Tip:** Click on any repository name to explore it in detail!")
|
553 |
|
554 |
# Modal popup for repository action selection
|
|
|
567 |
explore_repo_btn = gr.Button("π Open in Repo Explorer", variant="secondary", size="lg")
|
568 |
cancel_modal_btn = gr.Button("β Cancel", size="lg")
|
569 |
|
570 |
+
gr.Markdown("### π All Analysis Results")
|
571 |
df_output = gr.Dataframe(
|
572 |
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
573 |
wrap=True,
|
|
|
632 |
</div>
|
633 |
"""
|
634 |
)
|
635 |
+
|
636 |
# --- Event Handler Functions ---
|
637 |
|
638 |
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
|
|
795 |
|
796 |
return "", gr.update(visible=False), gr.update()
|
797 |
|
798 |
+
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
|
799 |
"""Analyzes all repositories in the CSV file with progress tracking."""
|
800 |
if not repo_ids:
|
801 |
+
return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first.", pd.DataFrame(), gr.update(visible=False)
|
802 |
|
803 |
total_repos = len(repo_ids)
|
804 |
|
|
|
880 |
# Complete the progress
|
881 |
progress(1.0, desc="Batch analysis completed!")
|
882 |
|
883 |
+
# Get final updated dataframe
|
884 |
+
updated_df = read_csv_to_dataframe()
|
885 |
+
|
886 |
+
# Get top 3 most relevant repositories
|
887 |
+
top_repos = get_top_relevant_repos(updated_df, user_requirements, top_n=3)
|
888 |
+
|
889 |
# Final status with detailed breakdown
|
890 |
final_status = f"π Batch Analysis Complete!\nβ
Successful: {successful_analyses}/{total_repos}\nβ Failed: {failed_analyses}/{total_repos}"
|
891 |
if csv_update_failures > 0:
|
892 |
final_status += f"\nβ οΈ CSV Update Issues: {csv_update_failures}/{total_repos}"
|
893 |
|
894 |
+
# Add top repos info if available
|
895 |
+
if not top_repos.empty:
|
896 |
+
final_status += f"\n\nπ Top {len(top_repos)} most relevant repositories selected!"
|
897 |
+
|
898 |
+
# Show top repos section if we have results
|
899 |
+
show_top_section = gr.update(visible=not top_repos.empty)
|
900 |
|
901 |
logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues")
|
902 |
+
return updated_df, final_status, top_repos, show_top_section
|
903 |
|
904 |
except Exception as e:
|
905 |
logger.error(f"Error in batch analysis: {e}")
|
906 |
error_status = f"β Batch analysis failed: {e}"
|
907 |
+
return read_csv_to_dataframe(), error_status, pd.DataFrame(), gr.update(visible=False)
|
908 |
|
909 |
def handle_visit_repo(repo_id: str) -> Tuple[Any, str]:
|
910 |
"""Handle visiting the Hugging Face Space for the repository."""
|
|
|
957 |
).then(
|
958 |
fn=handle_analyze_all_repos,
|
959 |
inputs=[repo_ids_state, user_requirements_state],
|
960 |
+
outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
|
961 |
)
|
962 |
|
963 |
# Chatbot Tab
|
|
|
1021 |
outputs=[selected_repo_display, repo_action_modal, tabs]
|
1022 |
)
|
1023 |
|
1024 |
+
# Add selection event for top repositories dataframe too
|
1025 |
+
top_repos_df.select(
|
1026 |
+
fn=handle_dataframe_select,
|
1027 |
+
inputs=[top_repos_df],
|
1028 |
+
outputs=[selected_repo_display, repo_action_modal, tabs]
|
1029 |
+
)
|
1030 |
+
|
1031 |
return app
|
1032 |
|
1033 |
if __name__ == "__main__":
|