Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,16 @@ import pandas as pd
|
|
5 |
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
|
6 |
from hf_utils import download_space_repo, search_top_spaces
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def read_csv_as_text(csv_filename):
|
11 |
return pd.read_csv(csv_filename, dtype=str)
|
@@ -131,6 +140,36 @@ df_output = gr.Dataframe(headers=["repo id", "strength", "weaknesses", "speciali
|
|
131 |
datatype=["str", "str", "str", "str", "str", "str"]
|
132 |
)
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
with gr.Blocks() as demo:
|
135 |
page_state = gr.State(0)
|
136 |
|
@@ -164,15 +203,20 @@ with gr.Blocks() as demo:
|
|
164 |
back_btn = gr.Button("Back to Input")
|
165 |
back_to_start_btn2 = gr.Button("Back to Start")
|
166 |
|
167 |
-
# --- Page 3: Chatbot
|
168 |
with gr.Column(visible=False) as chatbot_page:
|
169 |
-
gr.Markdown("##
|
170 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
171 |
back_to_start_btn3 = gr.Button("Back to Start")
|
172 |
|
173 |
# Navigation logic
|
174 |
-
option_a_btn.click(
|
175 |
-
option_b_btn.click(go_to_chatbot, inputs=None, outputs=[start_page,
|
176 |
next_btn.click(go_to_analysis, inputs=None, outputs=[input_page, analysis_page, chatbot_page])
|
177 |
back_btn.click(go_to_input, inputs=None, outputs=[input_page, analysis_page, chatbot_page])
|
178 |
back_to_start_btn.click(go_to_start, inputs=None, outputs=[start_page, input_page, chatbot_page])
|
@@ -186,4 +230,17 @@ with gr.Blocks() as demo:
|
|
186 |
# Analysis logic
|
187 |
combine_btn.click(show_combined_repo_and_llm, inputs=None, outputs=[combined_txt, llm_output_txt, df_display])
|
188 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
demo.launch()
|
|
|
5 |
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
|
6 |
from hf_utils import download_space_repo, search_top_spaces
|
7 |
|
8 |
+
# Import chatbot logic
|
9 |
+
from analyzer import analyze_code
|
10 |
+
|
11 |
+
# Chatbot system prompt
|
12 |
+
CHATBOT_SYSTEM_PROMPT = (
|
13 |
+
"You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
|
14 |
+
"Ask questions to clarify what they want, their use case, preferred language, features, etc. "
|
15 |
+
"When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
|
16 |
+
"Return only the keywords as a comma-separated list."
|
17 |
+
)
|
18 |
|
19 |
def read_csv_as_text(csv_filename):
|
20 |
return pd.read_csv(csv_filename, dtype=str)
|
|
|
140 |
datatype=["str", "str", "str", "str", "str", "str"]
|
141 |
)
|
142 |
|
143 |
+
def chat_with_user(user_message, history):
|
144 |
+
from openai import OpenAI
|
145 |
+
client = OpenAI()
|
146 |
+
messages = [
|
147 |
+
{"role": "system", "content": CHATBOT_SYSTEM_PROMPT}
|
148 |
+
]
|
149 |
+
for msg in history:
|
150 |
+
messages.append({"role": "user", "content": msg[0]})
|
151 |
+
if msg[1]:
|
152 |
+
messages.append({"role": "assistant", "content": msg[1]})
|
153 |
+
messages.append({"role": "user", "content": user_message})
|
154 |
+
response = client.chat.completions.create(
|
155 |
+
model="gpt-4o-mini",
|
156 |
+
messages=messages,
|
157 |
+
max_tokens=256,
|
158 |
+
temperature=0.7
|
159 |
+
)
|
160 |
+
assistant_reply = response.choices[0].message.content
|
161 |
+
return assistant_reply
|
162 |
+
|
163 |
+
def extract_keywords_from_conversation(history):
|
164 |
+
conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
|
165 |
+
prompt = (
|
166 |
+
"Given the following conversation between a user and an assistant about finding an ideal open-source repo, "
|
167 |
+
"extract about 5 keywords that best represent what the user is looking for. "
|
168 |
+
"Return only the keywords as a comma-separated list.\n\nConversation:\n" + conversation
|
169 |
+
)
|
170 |
+
keywords = analyze_code(prompt)
|
171 |
+
return keywords
|
172 |
+
|
173 |
with gr.Blocks() as demo:
|
174 |
page_state = gr.State(0)
|
175 |
|
|
|
203 |
back_btn = gr.Button("Back to Input")
|
204 |
back_to_start_btn2 = gr.Button("Back to Start")
|
205 |
|
206 |
+
# --- Page 3: Chatbot ---
|
207 |
with gr.Column(visible=False) as chatbot_page:
|
208 |
+
gr.Markdown("## Repo Recommendation Chatbot")
|
209 |
+
chatbot = gr.Chatbot()
|
210 |
+
state = gr.State([])
|
211 |
+
user_input = gr.Textbox(label="Your message", placeholder="Describe your ideal repo or answer the assistant's questions...")
|
212 |
+
send_btn = gr.Button("Send")
|
213 |
+
end_btn = gr.Button("End Chat and Extract Keywords")
|
214 |
+
keywords_output = gr.Textbox(label="Extracted Keywords for Repo Search", interactive=False)
|
215 |
back_to_start_btn3 = gr.Button("Back to Start")
|
216 |
|
217 |
# Navigation logic
|
218 |
+
option_a_btn.click(go_to_input, inputs=None, outputs=[start_page, input_page, chatbot_page])
|
219 |
+
option_b_btn.click(go_to_chatbot, inputs=None, outputs=[start_page, input_page, chatbot_page])
|
220 |
next_btn.click(go_to_analysis, inputs=None, outputs=[input_page, analysis_page, chatbot_page])
|
221 |
back_btn.click(go_to_input, inputs=None, outputs=[input_page, analysis_page, chatbot_page])
|
222 |
back_to_start_btn.click(go_to_start, inputs=None, outputs=[start_page, input_page, chatbot_page])
|
|
|
230 |
# Analysis logic
|
231 |
combine_btn.click(show_combined_repo_and_llm, inputs=None, outputs=[combined_txt, llm_output_txt, df_display])
|
232 |
|
233 |
+
# Chatbot logic
|
234 |
+
def user_send(user_message, history):
|
235 |
+
assistant_reply = chat_with_user(user_message, history)
|
236 |
+
history = history + [[user_message, assistant_reply]]
|
237 |
+
return history, history, ""
|
238 |
+
|
239 |
+
def end_chat(history):
|
240 |
+
keywords = extract_keywords_from_conversation(history)
|
241 |
+
return keywords
|
242 |
+
|
243 |
+
send_btn.click(user_send, inputs=[user_input, state], outputs=[chatbot, state, user_input])
|
244 |
+
end_btn.click(end_chat, inputs=state, outputs=keywords_output)
|
245 |
+
|
246 |
demo.launch()
|