naman1102 commited on
Commit
9a88164
·
1 Parent(s): 6673deb
Files changed (3) hide show
  1. analyzer.py +3 -2
  2. chatbot_page.py +7 -4
  3. test.py +23 -0
analyzer.py CHANGED
@@ -8,7 +8,8 @@ def analyze_code(code: str) -> str:
8
  Returns the analysis as a string.
9
  """
10
  from openai import OpenAI
11
- client = OpenAI()
 
12
  system_prompt = (
13
  "You are a helpful assistant. Analyze the code given to you. "
14
  "Return your response strictly in JSON format with the following keys: "
@@ -23,7 +24,7 @@ def analyze_code(code: str) -> str:
23
  "}"
24
  )
25
  response = client.chat.completions.create(
26
- model="gpt-4o-mini", # GPT-4.1 mini
27
  messages=[
28
  {"role": "system", "content": system_prompt},
29
  {"role": "user", "content": code}
 
8
  Returns the analysis as a string.
9
  """
10
  from openai import OpenAI
11
+ client = OpenAI(api_key=os.getenv("modal_api"))
12
+ client.base_url = os.getenv("base_url")
13
  system_prompt = (
14
  "You are a helpful assistant. Analyze the code given to you. "
15
  "Return your response strictly in JSON format with the following keys: "
 
24
  "}"
25
  )
26
  response = client.chat.completions.create(
27
+ model="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16", # Updated model
28
  messages=[
29
  {"role": "system", "content": system_prompt},
30
  {"role": "user", "content": code}
chatbot_page.py CHANGED
@@ -1,4 +1,5 @@
1
  import gradio as gr
 
2
  # from analyzer import analyze_code
3
 
4
  # System prompt for the chatbot
@@ -15,7 +16,8 @@ conversation_history = []
15
  # Function to handle chat
16
  def chat_with_user(user_message, history):
17
  from openai import OpenAI
18
- client = OpenAI()
 
19
  # Build the message list for the LLM
20
  messages = [
21
  {"role": "system", "content": CHATBOT_SYSTEM_PROMPT}
@@ -26,7 +28,7 @@ def chat_with_user(user_message, history):
26
  messages.append({"role": "assistant", "content": msg[1]})
27
  messages.append({"role": "user", "content": user_message})
28
  response = client.chat.completions.create(
29
- model="gpt-4o-mini",
30
  messages=messages,
31
  max_tokens=256,
32
  temperature=0.7
@@ -38,7 +40,8 @@ def chat_with_user(user_message, history):
38
  def extract_keywords_from_conversation(history):
39
  print("Extracting keywords from conversation...")
40
  from openai import OpenAI
41
- client = OpenAI()
 
42
  # Combine all user and assistant messages into a single string
43
  conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
44
  system_prompt = (
@@ -50,7 +53,7 @@ def extract_keywords_from_conversation(history):
50
  "Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
51
  )
52
  response = client.chat.completions.create(
53
- model="gpt-4o-mini",
54
  messages=[
55
  {"role": "system", "content": system_prompt},
56
  {"role": "user", "content": user_prompt}
 
1
  import gradio as gr
2
+ import os
3
  # from analyzer import analyze_code
4
 
5
  # System prompt for the chatbot
 
16
  # Function to handle chat
17
  def chat_with_user(user_message, history):
18
  from openai import OpenAI
19
+ client = OpenAI(api_key=os.getenv("modal_api"))
20
+ client.base_url = os.getenv("base_url")
21
  # Build the message list for the LLM
22
  messages = [
23
  {"role": "system", "content": CHATBOT_SYSTEM_PROMPT}
 
28
  messages.append({"role": "assistant", "content": msg[1]})
29
  messages.append({"role": "user", "content": user_message})
30
  response = client.chat.completions.create(
31
+ model="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",
32
  messages=messages,
33
  max_tokens=256,
34
  temperature=0.7
 
40
  def extract_keywords_from_conversation(history):
41
  print("Extracting keywords from conversation...")
42
  from openai import OpenAI
43
+ client = OpenAI(api_key=os.getenv("modal_api"))
44
+ client.base_url = os.getenv("base_url")
45
  # Combine all user and assistant messages into a single string
46
  conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]])
47
  system_prompt = (
 
53
  "Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search."
54
  )
55
  response = client.chat.completions.create(
56
+ model="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",
57
  messages=[
58
  {"role": "system", "content": system_prompt},
59
  {"role": "user", "content": user_prompt}
test.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This simple script shows how to interact with an OpenAI-compatible server from a client."""
2
+
3
+ # import argparse
4
+
5
+ # import modal
6
+ from openai import OpenAI
7
+ import os
8
+
9
+ client = OpenAI(api_key=os.getenv("modal_api"))
10
+ client.base_url = (
11
+ "https://alexprincecursor--example-vllm-openai-compatible-serve.modal.run/v1/"
12
+ )
13
+
14
+ response = client.chat.completions.create(
15
+ model="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16", # GPT-4.1 mini
16
+ messages=[
17
+ {"role": "system", "content": "You are a rockstar lyric generator. You are given a song and you need to generate a lyric for it."},
18
+ {"role": "user", "content":"The song is 'Bohemian Rhapsody' by Queen."}
19
+ ],
20
+ max_tokens=512,
21
+ temperature=0.7
22
+ )
23
+ print(response.choices[0].message.content)