Update app.py
Browse files
app.py
CHANGED
@@ -209,6 +209,126 @@ def use_keywords_to_search_and_update_csv(keywords):
|
|
209 |
df = read_csv_as_text(csv_filename)
|
210 |
return df
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
with gr.Blocks() as demo:
|
213 |
page_state = gr.State(0)
|
214 |
|
@@ -266,6 +386,14 @@ with gr.Blocks() as demo:
|
|
266 |
llm_output_txt_results = gr.Textbox(label="LLM Analysis Output", lines=10)
|
267 |
back_to_start_btn4 = gr.Button("Back to Start")
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# Navigation logic
|
270 |
option_a_btn.click(go_to_input, inputs=None, outputs=[start_page, input_page, chatbot_page, results_page])
|
271 |
option_b_btn.click(go_to_chatbot, inputs=None, outputs=[start_page, input_page, chatbot_page, results_page])
|
@@ -312,4 +440,10 @@ with gr.Blocks() as demo:
|
|
312 |
# Add logic for the new button on results_page
|
313 |
analyze_next_btn.click(show_combined_repo_and_llm, inputs=None, outputs=[combined_txt_results, llm_output_txt_results, results_df])
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
demo.launch()
|
|
|
209 |
df = read_csv_as_text(csv_filename)
|
210 |
return df
|
211 |
|
212 |
+
def batch_analyze_and_select_top():
|
213 |
+
csv_filename = "repo_ids.csv"
|
214 |
+
try:
|
215 |
+
df = read_csv_as_text(csv_filename)
|
216 |
+
all_infos = []
|
217 |
+
# Analyze each repo and update CSV
|
218 |
+
for idx, row in df.iterrows():
|
219 |
+
repo_id = row["repo id"]
|
220 |
+
try:
|
221 |
+
download_space_repo(repo_id, local_dir="repo_files")
|
222 |
+
txt_path = combine_repo_files_for_llm()
|
223 |
+
llm_output = analyze_combined_file(txt_path)
|
224 |
+
last_start = llm_output.rfind('{')
|
225 |
+
last_end = llm_output.rfind('}')
|
226 |
+
if last_start != -1 and last_end != -1 and last_end > last_start:
|
227 |
+
final_json_str = llm_output[last_start:last_end+1]
|
228 |
+
else:
|
229 |
+
final_json_str = llm_output
|
230 |
+
llm_json = parse_llm_json_response(final_json_str)
|
231 |
+
if isinstance(llm_json, dict) and "error" not in llm_json:
|
232 |
+
df.at[idx, "strength"] = llm_json.get("strength", "")
|
233 |
+
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
|
234 |
+
df.at[idx, "speciality"] = llm_json.get("speciality", "")
|
235 |
+
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
|
236 |
+
all_infos.append({"repo id": repo_id, **llm_json})
|
237 |
+
except Exception as e:
|
238 |
+
all_infos.append({"repo id": repo_id, "error": str(e)})
|
239 |
+
df.to_csv(csv_filename, index=False)
|
240 |
+
# Display all info
|
241 |
+
all_info_str = "\n\n".join([str(info) for info in all_infos])
|
242 |
+
# Let LLM choose the best 3
|
243 |
+
from openai import OpenAI
|
244 |
+
import os
|
245 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
246 |
+
client.base_url = os.getenv("base_url")
|
247 |
+
selection_prompt = (
|
248 |
+
"You are a helpful assistant. You are given a list of repo analyses in JSON format. "
|
249 |
+
"Choose the 3 repos that are the most impressive, relevant, or useful. "
|
250 |
+
"Return ONLY a JSON array of the 3 best repo ids, in order of preference, under the key 'top_repos'. "
|
251 |
+
"Example: {\"top_repos\": [\"repo1\", \"repo2\", \"repo3\"]}"
|
252 |
+
)
|
253 |
+
user_content = "Here are the repo analyses:\n" + all_info_str
|
254 |
+
response = client.chat.completions.create(
|
255 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
256 |
+
messages=[
|
257 |
+
{"role": "system", "content": selection_prompt},
|
258 |
+
{"role": "user", "content": user_content}
|
259 |
+
],
|
260 |
+
max_tokens=256,
|
261 |
+
temperature=0.3
|
262 |
+
)
|
263 |
+
selection_json = parse_llm_json_response(response.choices[0].message.content)
|
264 |
+
top_repos = selection_json.get("top_repos", [])
|
265 |
+
return all_info_str, str(top_repos), df
|
266 |
+
except Exception as e:
|
267 |
+
return f"Error in batch analysis: {e}", "", pd.DataFrame()
|
268 |
+
|
269 |
+
def batch_analyze_and_select_top_for_chat(state):
|
270 |
+
csv_filename = "repo_ids.csv"
|
271 |
+
try:
|
272 |
+
df = read_csv_as_text(csv_filename)
|
273 |
+
all_infos = []
|
274 |
+
for idx, row in df.iterrows():
|
275 |
+
repo_id = row["repo id"]
|
276 |
+
try:
|
277 |
+
download_space_repo(repo_id, local_dir="repo_files")
|
278 |
+
txt_path = combine_repo_files_for_llm()
|
279 |
+
llm_output = analyze_combined_file(txt_path)
|
280 |
+
last_start = llm_output.rfind('{')
|
281 |
+
last_end = llm_output.rfind('}')
|
282 |
+
if last_start != -1 and last_end != -1 and last_end > last_start:
|
283 |
+
final_json_str = llm_output[last_start:last_end+1]
|
284 |
+
else:
|
285 |
+
final_json_str = llm_output
|
286 |
+
llm_json = parse_llm_json_response(final_json_str)
|
287 |
+
if isinstance(llm_json, dict) and "error" not in llm_json:
|
288 |
+
df.at[idx, "strength"] = llm_json.get("strength", "")
|
289 |
+
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
|
290 |
+
df.at[idx, "speciality"] = llm_json.get("speciality", "")
|
291 |
+
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
|
292 |
+
all_infos.append({"repo id": repo_id, **llm_json})
|
293 |
+
except Exception as e:
|
294 |
+
all_infos.append({"repo id": repo_id, "error": str(e)})
|
295 |
+
df.to_csv(csv_filename, index=False)
|
296 |
+
all_info_str = "\n\n".join([str(info) for info in all_infos])
|
297 |
+
from openai import OpenAI
|
298 |
+
import os
|
299 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
300 |
+
client.base_url = os.getenv("base_url")
|
301 |
+
selection_prompt = (
|
302 |
+
"You are a helpful assistant. You are given a list of repo analyses in JSON format. "
|
303 |
+
"Choose the 3 repos that are the most impressive, relevant, or useful. "
|
304 |
+
"Return ONLY a JSON array of the 3 best repo ids, in order of preference, under the key 'top_repos'. "
|
305 |
+
"Example: {\"top_repos\": [\"repo1\", \"repo2\", \"repo3\"]}"
|
306 |
+
)
|
307 |
+
user_content = "Here are the repo analyses:\n" + all_info_str
|
308 |
+
response = client.chat.completions.create(
|
309 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
310 |
+
messages=[
|
311 |
+
{"role": "system", "content": selection_prompt},
|
312 |
+
{"role": "user", "content": user_content}
|
313 |
+
],
|
314 |
+
max_tokens=256,
|
315 |
+
temperature=0.3
|
316 |
+
)
|
317 |
+
selection_json = parse_llm_json_response(response.choices[0].message.content)
|
318 |
+
top_repos = selection_json.get("top_repos", [])
|
319 |
+
# Add a new assistant message to the chat state
|
320 |
+
new_message = ("", f"The top 3 repo IDs are: {', '.join(top_repos)}")
|
321 |
+
if state is None:
|
322 |
+
state = []
|
323 |
+
state = state + [list(new_message)]
|
324 |
+
return state
|
325 |
+
except Exception as e:
|
326 |
+
new_message = ("", f"Error in batch analysis: {e}")
|
327 |
+
if state is None:
|
328 |
+
state = []
|
329 |
+
state = state + [list(new_message)]
|
330 |
+
return state
|
331 |
+
|
332 |
with gr.Blocks() as demo:
|
333 |
page_state = gr.State(0)
|
334 |
|
|
|
386 |
llm_output_txt_results = gr.Textbox(label="LLM Analysis Output", lines=10)
|
387 |
back_to_start_btn4 = gr.Button("Back to Start")
|
388 |
|
389 |
+
# Add at the end, after results_page
|
390 |
+
batch_btn = gr.Button("Batch Analyze All & Select Top 3", visible=True)
|
391 |
+
batch_info_txt = gr.Textbox(label="All Repo Analyses", lines=10)
|
392 |
+
top3_txt = gr.Textbox(label="Top 3 Repo IDs", lines=1)
|
393 |
+
|
394 |
+
# Add a button to show top 3 in chat
|
395 |
+
show_top3_chat_btn = gr.Button("Show Top 3 Repo IDs in Chat", visible=True)
|
396 |
+
|
397 |
# Navigation logic
|
398 |
option_a_btn.click(go_to_input, inputs=None, outputs=[start_page, input_page, chatbot_page, results_page])
|
399 |
option_b_btn.click(go_to_chatbot, inputs=None, outputs=[start_page, input_page, chatbot_page, results_page])
|
|
|
440 |
# Add logic for the new button on results_page
|
441 |
analyze_next_btn.click(show_combined_repo_and_llm, inputs=None, outputs=[combined_txt_results, llm_output_txt_results, results_df])
|
442 |
|
443 |
+
# Add logic for the batch button
|
444 |
+
batch_btn.click(batch_analyze_and_select_top, inputs=None, outputs=[batch_info_txt, top3_txt, df_output])
|
445 |
+
|
446 |
+
# Add logic for showing top 3 in chat
|
447 |
+
show_top3_chat_btn.click(batch_analyze_and_select_top_for_chat, inputs=[state], outputs=[state])
|
448 |
+
|
449 |
demo.launch()
|