cleanup
Browse files- old_app2.py +0 -1253
- repo_explorer_old.py +0 -200
- test.py +0 -23
- test_vectorization.py +0 -135
old_app2.py
DELETED
@@ -1,1253 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import regex as re
|
3 |
-
import csv
|
4 |
-
import pandas as pd
|
5 |
-
from typing import List, Dict, Tuple, Any
|
6 |
-
import logging
|
7 |
-
import os
|
8 |
-
import time
|
9 |
-
|
10 |
-
# Import core logic from other modules, as in app_old.py
|
11 |
-
from analyzer import (
|
12 |
-
combine_repo_files_for_llm,
|
13 |
-
parse_llm_json_response,
|
14 |
-
analyze_combined_file,
|
15 |
-
handle_load_repository
|
16 |
-
)
|
17 |
-
from hf_utils import download_filtered_space_files, search_top_spaces
|
18 |
-
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
19 |
-
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events
|
20 |
-
|
21 |
-
# --- Configuration ---
|
22 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
-
logger = logging.getLogger(__name__)
|
24 |
-
|
25 |
-
CSV_FILE = "repo_ids.csv"
|
26 |
-
CHATBOT_SYSTEM_PROMPT = (
|
27 |
-
"You are a helpful assistant whose ONLY job is to gather information about the user's ideal repository requirements. "
|
28 |
-
"DO NOT suggest any specific repositories or give repository recommendations. "
|
29 |
-
"Your role is to ask clarifying questions to understand exactly what the user is looking for. "
|
30 |
-
"Ask about their use case, preferred programming language, specific features needed, project type, etc. "
|
31 |
-
"When you feel you have gathered enough detailed information about their requirements, "
|
32 |
-
"tell the user: 'I think I have enough information about your requirements. Please click the Extract Keywords button to search for repositories.' "
|
33 |
-
"Focus on understanding their needs, not providing solutions."
|
34 |
-
)
|
35 |
-
CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you define your ideal Hugging Face repository requirements. I won't suggest specific repos - my job is to understand exactly what you're looking for. Tell me about your project: What type of application are you building? What's your use case?"
|
36 |
-
|
37 |
-
# --- Helper Functions (Logic) ---
|
38 |
-
|
39 |
-
def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame:
|
40 |
-
"""
|
41 |
-
Uses LLM to select the top N most relevant repositories based on user requirements and analysis data.
|
42 |
-
"""
|
43 |
-
try:
|
44 |
-
if df.empty:
|
45 |
-
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
46 |
-
|
47 |
-
# Filter out rows with no analysis data
|
48 |
-
analyzed_df = df.copy()
|
49 |
-
analyzed_df = analyzed_df[
|
50 |
-
(analyzed_df['strength'].str.strip() != '') |
|
51 |
-
(analyzed_df['weaknesses'].str.strip() != '') |
|
52 |
-
(analyzed_df['speciality'].str.strip() != '') |
|
53 |
-
(analyzed_df['relevance rating'].str.strip() != '')
|
54 |
-
]
|
55 |
-
|
56 |
-
if analyzed_df.empty:
|
57 |
-
logger.warning("No analyzed repositories found for LLM selection")
|
58 |
-
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
59 |
-
|
60 |
-
# Create a prompt for the LLM
|
61 |
-
csv_data = ""
|
62 |
-
for idx, row in analyzed_df.iterrows():
|
63 |
-
csv_data += f"Repository: {row['repo id']}\n"
|
64 |
-
csv_data += f"Strengths: {row['strength']}\n"
|
65 |
-
csv_data += f"Weaknesses: {row['weaknesses']}\n"
|
66 |
-
csv_data += f"Speciality: {row['speciality']}\n"
|
67 |
-
csv_data += f"Relevance: {row['relevance rating']}\n\n"
|
68 |
-
|
69 |
-
user_context = user_requirements if user_requirements.strip() else "General repository recommendation"
|
70 |
-
|
71 |
-
prompt = f"""Based on the user's requirements and the analysis of repositories below, select the top {top_n} most relevant repositories.
|
72 |
-
|
73 |
-
User Requirements:
|
74 |
-
{user_context}
|
75 |
-
|
76 |
-
Repository Analysis Data:
|
77 |
-
{csv_data}
|
78 |
-
|
79 |
-
Please analyze all repositories and select the {top_n} most relevant ones based on:
|
80 |
-
1. How well they match the user's specific requirements
|
81 |
-
2. Their strengths and capabilities
|
82 |
-
3. Their relevance rating
|
83 |
-
4. Their speciality alignment with user needs
|
84 |
-
|
85 |
-
Return ONLY a JSON list of the repository IDs in order of relevance (most relevant first). Example format:
|
86 |
-
["repo1", "repo2", "repo3"]
|
87 |
-
|
88 |
-
Selected repositories:"""
|
89 |
-
|
90 |
-
try:
|
91 |
-
from openai import OpenAI
|
92 |
-
client = OpenAI(api_key=os.getenv("modal_api"))
|
93 |
-
client.base_url = os.getenv("base_url")
|
94 |
-
|
95 |
-
response = client.chat.completions.create(
|
96 |
-
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
97 |
-
messages=[
|
98 |
-
{"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."},
|
99 |
-
{"role": "user", "content": prompt}
|
100 |
-
],
|
101 |
-
max_tokens=200,
|
102 |
-
temperature=0.3
|
103 |
-
)
|
104 |
-
|
105 |
-
llm_response = response.choices[0].message.content.strip()
|
106 |
-
logger.info(f"LLM response for top repos: {llm_response}")
|
107 |
-
|
108 |
-
# Extract JSON from response
|
109 |
-
import json
|
110 |
-
import re
|
111 |
-
|
112 |
-
# Try to find JSON array in the response
|
113 |
-
json_match = re.search(r'\[.*\]', llm_response)
|
114 |
-
if json_match:
|
115 |
-
selected_repos = json.loads(json_match.group())
|
116 |
-
logger.info(f"LLM selected repositories: {selected_repos}")
|
117 |
-
|
118 |
-
# Filter dataframe to only include selected repositories in order
|
119 |
-
top_repos_list = []
|
120 |
-
for repo_id in selected_repos[:top_n]:
|
121 |
-
matching_rows = analyzed_df[analyzed_df['repo id'] == repo_id]
|
122 |
-
if not matching_rows.empty:
|
123 |
-
top_repos_list.append(matching_rows.iloc[0])
|
124 |
-
|
125 |
-
if top_repos_list:
|
126 |
-
top_repos = pd.DataFrame(top_repos_list)
|
127 |
-
logger.info(f"Successfully selected {len(top_repos)} repositories using LLM")
|
128 |
-
return top_repos
|
129 |
-
|
130 |
-
# Fallback: if LLM response parsing fails, use first N analyzed repos
|
131 |
-
logger.warning("Failed to parse LLM response, using fallback selection")
|
132 |
-
return analyzed_df.head(top_n)
|
133 |
-
|
134 |
-
except Exception as llm_error:
|
135 |
-
logger.error(f"LLM selection failed: {llm_error}")
|
136 |
-
# Fallback: return first N repositories with analysis data
|
137 |
-
return analyzed_df.head(top_n)
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
logger.error(f"Error in LLM-based repo selection: {e}")
|
141 |
-
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
142 |
-
|
143 |
-
def write_repos_to_csv(repo_ids: List[str]) -> None:
|
144 |
-
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
|
145 |
-
try:
|
146 |
-
with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
|
147 |
-
writer = csv.writer(csvfile)
|
148 |
-
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
149 |
-
for repo_id in repo_ids:
|
150 |
-
writer.writerow([repo_id, "", "", "", ""])
|
151 |
-
logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
|
152 |
-
except Exception as e:
|
153 |
-
logger.error(f"Error writing to CSV: {e}")
|
154 |
-
|
155 |
-
def format_text_for_dataframe(text: str, max_length: int = 200) -> str:
|
156 |
-
"""Format text for better display in dataframe by truncating and cleaning."""
|
157 |
-
if not text or pd.isna(text):
|
158 |
-
return ""
|
159 |
-
|
160 |
-
# Clean the text
|
161 |
-
text = str(text).strip()
|
162 |
-
|
163 |
-
# Remove excessive whitespace and newlines
|
164 |
-
text = re.sub(r'\s+', ' ', text)
|
165 |
-
|
166 |
-
# Truncate if too long
|
167 |
-
if len(text) > max_length:
|
168 |
-
text = text[:max_length-3] + "..."
|
169 |
-
|
170 |
-
return text
|
171 |
-
|
172 |
-
def read_csv_to_dataframe() -> pd.DataFrame:
|
173 |
-
"""Reads the CSV file into a pandas DataFrame with full text preserved."""
|
174 |
-
try:
|
175 |
-
df = pd.read_csv(CSV_FILE, dtype=str).fillna('')
|
176 |
-
|
177 |
-
# Keep the full text intact - don't truncate here
|
178 |
-
# The truncation will be handled in the UI display layer
|
179 |
-
|
180 |
-
return df
|
181 |
-
except FileNotFoundError:
|
182 |
-
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
183 |
-
except Exception as e:
|
184 |
-
logger.error(f"Error reading CSV: {e}")
|
185 |
-
return pd.DataFrame()
|
186 |
-
|
187 |
-
def format_dataframe_for_display(df: pd.DataFrame) -> pd.DataFrame:
|
188 |
-
"""Returns dataframe with full text (no truncation) for display."""
|
189 |
-
if df.empty:
|
190 |
-
return df
|
191 |
-
|
192 |
-
# Return the dataframe as-is without any text truncation
|
193 |
-
# This will show the full text content in the CSV display
|
194 |
-
return df.copy()
|
195 |
-
|
196 |
-
def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]:
|
197 |
-
"""
|
198 |
-
Downloads, analyzes a single repo, updates the CSV, and returns results.
|
199 |
-
Now includes user requirements for better relevance rating.
|
200 |
-
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
|
201 |
-
"""
|
202 |
-
try:
|
203 |
-
logger.info(f"Starting analysis for repo: {repo_id}")
|
204 |
-
download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
|
205 |
-
txt_path = combine_repo_files_for_llm()
|
206 |
-
|
207 |
-
with open(txt_path, "r", encoding="utf-8") as f:
|
208 |
-
combined_content = f.read()
|
209 |
-
|
210 |
-
llm_output = analyze_combined_file(txt_path, user_requirements)
|
211 |
-
|
212 |
-
last_start = llm_output.rfind('{')
|
213 |
-
last_end = llm_output.rfind('}')
|
214 |
-
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
|
215 |
-
|
216 |
-
llm_json = parse_llm_json_response(final_json_str)
|
217 |
-
|
218 |
-
summary = ""
|
219 |
-
if isinstance(llm_json, dict) and "error" not in llm_json:
|
220 |
-
strengths = llm_json.get("strength", "N/A")
|
221 |
-
weaknesses = llm_json.get("weaknesses", "N/A")
|
222 |
-
relevance = llm_json.get("relevance rating", "N/A")
|
223 |
-
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}"
|
224 |
-
else:
|
225 |
-
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
|
226 |
-
|
227 |
-
# Update CSV
|
228 |
-
df = read_csv_to_dataframe()
|
229 |
-
repo_found_in_df = False
|
230 |
-
for idx, row in df.iterrows():
|
231 |
-
if row["repo id"] == repo_id:
|
232 |
-
if isinstance(llm_json, dict):
|
233 |
-
df.at[idx, "strength"] = llm_json.get("strength", "")
|
234 |
-
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
|
235 |
-
df.at[idx, "speciality"] = llm_json.get("speciality", "")
|
236 |
-
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
|
237 |
-
repo_found_in_df = True
|
238 |
-
break
|
239 |
-
|
240 |
-
if not repo_found_in_df:
|
241 |
-
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
|
242 |
-
|
243 |
-
# Write CSV with better error handling and flushing
|
244 |
-
try:
|
245 |
-
df.to_csv(CSV_FILE, index=False)
|
246 |
-
# Force file system flush
|
247 |
-
os.sync() if hasattr(os, 'sync') else None
|
248 |
-
logger.info(f"Successfully updated CSV for {repo_id}")
|
249 |
-
except Exception as csv_error:
|
250 |
-
logger.error(f"Failed to write CSV for {repo_id}: {csv_error}")
|
251 |
-
# Try once more with a small delay
|
252 |
-
time.sleep(0.2)
|
253 |
-
try:
|
254 |
-
df.to_csv(CSV_FILE, index=False)
|
255 |
-
logger.info(f"Successfully updated CSV for {repo_id} on retry")
|
256 |
-
except Exception as retry_error:
|
257 |
-
logger.error(f"Failed to write CSV for {repo_id} on retry: {retry_error}")
|
258 |
-
|
259 |
-
logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
|
260 |
-
return combined_content, summary, df
|
261 |
-
|
262 |
-
except Exception as e:
|
263 |
-
logger.error(f"An error occurred during analysis of {repo_id}: {e}")
|
264 |
-
error_summary = f"Error analyzing repo: {e}"
|
265 |
-
return "", error_summary, format_dataframe_for_display(read_csv_to_dataframe())
|
266 |
-
|
267 |
-
# --- NEW: Helper for Chat History Conversion ---
|
268 |
-
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
|
269 |
-
"""
|
270 |
-
Converts Gradio's 'messages' format to the old 'tuple' format for compatibility.
|
271 |
-
This robust version correctly handles histories that start with an assistant message.
|
272 |
-
"""
|
273 |
-
tuple_history = []
|
274 |
-
# Iterate through the history to find user messages
|
275 |
-
for i, msg in enumerate(history):
|
276 |
-
if msg['role'] == 'user':
|
277 |
-
# Once a user message is found, check if the next message is from the assistant
|
278 |
-
if i + 1 < len(history) and history[i+1]['role'] == 'assistant':
|
279 |
-
user_content = msg['content']
|
280 |
-
assistant_content = history[i+1]['content']
|
281 |
-
tuple_history.append((user_content, assistant_content))
|
282 |
-
return tuple_history
|
283 |
-
|
284 |
-
# --- Gradio UI ---
|
285 |
-
|
286 |
-
def create_ui() -> gr.Blocks:
|
287 |
-
"""Creates and configures the entire Gradio interface."""
|
288 |
-
|
289 |
-
css = """
|
290 |
-
/* Modern sleek design */
|
291 |
-
.gradio-container {
|
292 |
-
font-family: 'Inter', 'system-ui', sans-serif;
|
293 |
-
background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%);
|
294 |
-
min-height: 100vh;
|
295 |
-
}
|
296 |
-
|
297 |
-
.gr-form {
|
298 |
-
background: rgba(255, 255, 255, 0.95);
|
299 |
-
backdrop-filter: blur(10px);
|
300 |
-
border-radius: 16px;
|
301 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
302 |
-
padding: 24px;
|
303 |
-
margin: 16px;
|
304 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
305 |
-
}
|
306 |
-
|
307 |
-
.gr-button {
|
308 |
-
background: linear-gradient(45deg, #667eea, #764ba2);
|
309 |
-
border: none;
|
310 |
-
border-radius: 12px;
|
311 |
-
color: white;
|
312 |
-
font-weight: 600;
|
313 |
-
padding: 12px 24px;
|
314 |
-
transition: all 0.3s ease;
|
315 |
-
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4);
|
316 |
-
}
|
317 |
-
|
318 |
-
.gr-button:hover {
|
319 |
-
transform: translateY(-2px);
|
320 |
-
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6);
|
321 |
-
}
|
322 |
-
|
323 |
-
.gr-textbox {
|
324 |
-
border: 2px solid rgba(102, 126, 234, 0.2);
|
325 |
-
border-radius: 12px;
|
326 |
-
background: rgba(255, 255, 255, 0.9);
|
327 |
-
transition: all 0.3s ease;
|
328 |
-
}
|
329 |
-
|
330 |
-
.gr-textbox:focus {
|
331 |
-
border-color: #667eea;
|
332 |
-
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1);
|
333 |
-
}
|
334 |
-
|
335 |
-
.gr-panel {
|
336 |
-
background: rgba(255, 255, 255, 0.95);
|
337 |
-
border-radius: 16px;
|
338 |
-
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
339 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
340 |
-
}
|
341 |
-
|
342 |
-
.gr-tab-nav {
|
343 |
-
background: rgba(255, 255, 255, 0.95);
|
344 |
-
border-radius: 12px 12px 0 0;
|
345 |
-
backdrop-filter: blur(10px);
|
346 |
-
}
|
347 |
-
|
348 |
-
.gr-tab-nav button {
|
349 |
-
background: transparent;
|
350 |
-
border: none;
|
351 |
-
padding: 16px 24px;
|
352 |
-
font-weight: 600;
|
353 |
-
color: #666;
|
354 |
-
transition: all 0.3s ease;
|
355 |
-
}
|
356 |
-
|
357 |
-
.gr-tab-nav button.selected {
|
358 |
-
background: linear-gradient(45deg, #667eea, #764ba2);
|
359 |
-
color: white;
|
360 |
-
border-radius: 8px;
|
361 |
-
}
|
362 |
-
|
363 |
-
.chatbot {
|
364 |
-
border-radius: 16px;
|
365 |
-
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
366 |
-
}
|
367 |
-
|
368 |
-
/* Hide Gradio footer */
|
369 |
-
footer {
|
370 |
-
display: none !important;
|
371 |
-
}
|
372 |
-
|
373 |
-
/* Custom scrollbar */
|
374 |
-
::-webkit-scrollbar {
|
375 |
-
width: 8px;
|
376 |
-
}
|
377 |
-
|
378 |
-
::-webkit-scrollbar-track {
|
379 |
-
background: rgba(255, 255, 255, 0.1);
|
380 |
-
border-radius: 4px;
|
381 |
-
}
|
382 |
-
|
383 |
-
::-webkit-scrollbar-thumb {
|
384 |
-
background: linear-gradient(45deg, #667eea, #764ba2);
|
385 |
-
border-radius: 4px;
|
386 |
-
}
|
387 |
-
|
388 |
-
/* Improved dataframe styling for full text display */
|
389 |
-
.gr-dataframe {
|
390 |
-
border-radius: 12px;
|
391 |
-
overflow: hidden;
|
392 |
-
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
393 |
-
background: rgba(255, 255, 255, 0.98);
|
394 |
-
}
|
395 |
-
|
396 |
-
.gr-dataframe table {
|
397 |
-
width: 100%;
|
398 |
-
table-layout: fixed;
|
399 |
-
border-collapse: collapse;
|
400 |
-
}
|
401 |
-
|
402 |
-
/* Column width specifications for both dataframes */
|
403 |
-
.gr-dataframe th,
|
404 |
-
.gr-dataframe td {
|
405 |
-
padding: 12px 16px;
|
406 |
-
text-align: left;
|
407 |
-
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
|
408 |
-
font-size: 0.95rem;
|
409 |
-
line-height: 1.4;
|
410 |
-
}
|
411 |
-
|
412 |
-
/* Specific column widths - applying to both dataframes */
|
413 |
-
.gr-dataframe th:nth-child(1),
|
414 |
-
.gr-dataframe td:nth-child(1) { width: 16.67% !important; min-width: 16.67% !important; max-width: 16.67% !important; }
|
415 |
-
.gr-dataframe th:nth-child(2),
|
416 |
-
.gr-dataframe td:nth-child(2) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
|
417 |
-
.gr-dataframe th:nth-child(3),
|
418 |
-
.gr-dataframe td:nth-child(3) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; }
|
419 |
-
.gr-dataframe th:nth-child(4),
|
420 |
-
.gr-dataframe td:nth-child(4) { width: 20.83% !important; min-width: 20.83% !important; max-width: 20.83% !important; }
|
421 |
-
.gr-dataframe th:nth-child(5),
|
422 |
-
.gr-dataframe td:nth-child(5) { width: 12.5% !important; min-width: 12.5% !important; max-width: 12.5% !important; }
|
423 |
-
|
424 |
-
/* Additional specific targeting for both dataframes */
|
425 |
-
div[data-testid="dataframe"] table th:nth-child(1),
|
426 |
-
div[data-testid="dataframe"] table td:nth-child(1) { width: 16.67% !important; }
|
427 |
-
div[data-testid="dataframe"] table th:nth-child(2),
|
428 |
-
div[data-testid="dataframe"] table td:nth-child(2) { width: 25% !important; }
|
429 |
-
div[data-testid="dataframe"] table th:nth-child(3),
|
430 |
-
div[data-testid="dataframe"] table td:nth-child(3) { width: 25% !important; }
|
431 |
-
div[data-testid="dataframe"] table th:nth-child(4),
|
432 |
-
div[data-testid="dataframe"] table td:nth-child(4) { width: 20.83% !important; }
|
433 |
-
div[data-testid="dataframe"] table th:nth-child(5),
|
434 |
-
div[data-testid="dataframe"] table td:nth-child(5) { width: 12.5% !important; }
|
435 |
-
|
436 |
-
/* Make repository names clickable */
|
437 |
-
.gr-dataframe td:nth-child(1) {
|
438 |
-
cursor: pointer;
|
439 |
-
color: #667eea;
|
440 |
-
font-weight: 600;
|
441 |
-
transition: all 0.3s ease;
|
442 |
-
}
|
443 |
-
|
444 |
-
.gr-dataframe td:nth-child(1):hover {
|
445 |
-
background-color: rgba(102, 126, 234, 0.1);
|
446 |
-
color: #764ba2;
|
447 |
-
transform: scale(1.02);
|
448 |
-
}
|
449 |
-
|
450 |
-
/* Content columns - readable styling with scroll for long text */
|
451 |
-
.gr-dataframe td:nth-child(2),
|
452 |
-
.gr-dataframe td:nth-child(3),
|
453 |
-
.gr-dataframe td:nth-child(4),
|
454 |
-
.gr-dataframe td:nth-child(5) {
|
455 |
-
cursor: default;
|
456 |
-
font-size: 0.9rem;
|
457 |
-
}
|
458 |
-
|
459 |
-
.gr-dataframe tbody tr:hover {
|
460 |
-
background-color: rgba(102, 126, 234, 0.05);
|
461 |
-
}
|
462 |
-
|
463 |
-
/* JavaScript for auto-scroll to top on tab change */
|
464 |
-
<script>
|
465 |
-
document.addEventListener('DOMContentLoaded', function() {
|
466 |
-
// Function to scroll to top
|
467 |
-
function scrollToTop() {
|
468 |
-
window.scrollTo({
|
469 |
-
top: 0,
|
470 |
-
behavior: 'smooth'
|
471 |
-
});
|
472 |
-
}
|
473 |
-
|
474 |
-
// Observer for tab changes
|
475 |
-
const observer = new MutationObserver(function(mutations) {
|
476 |
-
mutations.forEach(function(mutation) {
|
477 |
-
if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
|
478 |
-
const target = mutation.target;
|
479 |
-
if (target.classList && target.classList.contains('selected')) {
|
480 |
-
// Tab was selected, scroll to top
|
481 |
-
setTimeout(scrollToTop, 100);
|
482 |
-
}
|
483 |
-
}
|
484 |
-
});
|
485 |
-
});
|
486 |
-
|
487 |
-
// Observe tab navigation buttons
|
488 |
-
const tabButtons = document.querySelectorAll('.gr-tab-nav button');
|
489 |
-
tabButtons.forEach(button => {
|
490 |
-
observer.observe(button, { attributes: true });
|
491 |
-
|
492 |
-
// Also add click listener for immediate scroll
|
493 |
-
button.addEventListener('click', function() {
|
494 |
-
setTimeout(scrollToTop, 150);
|
495 |
-
});
|
496 |
-
});
|
497 |
-
|
498 |
-
// Enhanced listener for programmatic tab changes (button-triggered navigation)
|
499 |
-
let lastSelectedTab = null;
|
500 |
-
const checkInterval = setInterval(function() {
|
501 |
-
const currentSelectedTab = document.querySelector('.gr-tab-nav button.selected');
|
502 |
-
if (currentSelectedTab && currentSelectedTab !== lastSelectedTab) {
|
503 |
-
lastSelectedTab = currentSelectedTab;
|
504 |
-
setTimeout(scrollToTop, 100);
|
505 |
-
}
|
506 |
-
}, 100);
|
507 |
-
|
508 |
-
// Additional scroll trigger for repo explorer navigation
|
509 |
-
window.addEventListener('repoExplorerNavigation', function() {
|
510 |
-
setTimeout(scrollToTop, 200);
|
511 |
-
});
|
512 |
-
|
513 |
-
// Watch for specific tab transitions to repo explorer
|
514 |
-
const repoExplorerObserver = new MutationObserver(function(mutations) {
|
515 |
-
mutations.forEach(function(mutation) {
|
516 |
-
if (mutation.type === 'attributes' && mutation.attributeName === 'class') {
|
517 |
-
const target = mutation.target;
|
518 |
-
if (target.textContent && target.textContent.includes('π Repo Explorer') && target.classList.contains('selected')) {
|
519 |
-
setTimeout(scrollToTop, 150);
|
520 |
-
}
|
521 |
-
}
|
522 |
-
});
|
523 |
-
});
|
524 |
-
|
525 |
-
// Start observing for repo explorer specific changes
|
526 |
-
setTimeout(function() {
|
527 |
-
const repoExplorerTab = Array.from(document.querySelectorAll('.gr-tab-nav button')).find(btn =>
|
528 |
-
btn.textContent && btn.textContent.includes('π Repo Explorer')
|
529 |
-
);
|
530 |
-
if (repoExplorerTab) {
|
531 |
-
repoExplorerObserver.observe(repoExplorerTab, { attributes: true });
|
532 |
-
}
|
533 |
-
}, 1000);
|
534 |
-
});
|
535 |
-
</script>
|
536 |
-
"""
|
537 |
-
|
538 |
-
with gr.Blocks(
|
539 |
-
theme=gr.themes.Soft(
|
540 |
-
primary_hue="blue",
|
541 |
-
secondary_hue="purple",
|
542 |
-
neutral_hue="gray",
|
543 |
-
font=["Inter", "system-ui", "sans-serif"]
|
544 |
-
),
|
545 |
-
css=css,
|
546 |
-
title="π HF Repo Analyzer"
|
547 |
-
) as app:
|
548 |
-
|
549 |
-
# --- State Management ---
|
550 |
-
# Using simple, separate state objects for robustness.
|
551 |
-
repo_ids_state = gr.State([])
|
552 |
-
current_repo_idx_state = gr.State(0)
|
553 |
-
user_requirements_state = gr.State("") # Store user requirements from chatbot
|
554 |
-
loaded_repo_content_state = gr.State("") # Store loaded repository content
|
555 |
-
current_repo_id_state = gr.State("") # Store current repository ID
|
556 |
-
selected_repo_id_state = gr.State("") # Store selected repository ID for modal actions
|
557 |
-
|
558 |
-
gr.Markdown(
|
559 |
-
"""
|
560 |
-
<div style="text-align: center; padding: 40px 20px; background: rgba(255, 255, 255, 0.1); border-radius: 20px; margin: 20px auto; max-width: 900px; backdrop-filter: blur(10px);">
|
561 |
-
<h1 style="font-size: 3.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
|
562 |
-
π HF Repo Analyzer
|
563 |
-
</h1>
|
564 |
-
<p style="font-size: 1.3rem; color: rgba(255, 255, 255, 0.9); margin: 16px 0 0 0; font-weight: 400; line-height: 1.6;">
|
565 |
-
Discover, analyze, and evaluate Hugging Face repositories with AI-powered insights
|
566 |
-
</p>
|
567 |
-
<div style="height: 4px; width: 80px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 24px auto; border-radius: 2px;"></div>
|
568 |
-
</div>
|
569 |
-
"""
|
570 |
-
)
|
571 |
-
|
572 |
-
# Global Reset Button - visible on all tabs
|
573 |
-
with gr.Row():
|
574 |
-
with gr.Column(scale=4):
|
575 |
-
pass
|
576 |
-
with gr.Column(scale=1):
|
577 |
-
reset_all_btn = gr.Button("π Reset Everything", variant="stop", size="lg")
|
578 |
-
with gr.Column(scale=1):
|
579 |
-
pass
|
580 |
-
|
581 |
-
with gr.Tabs() as tabs:
|
582 |
-
# --- Input Tab ---
|
583 |
-
with gr.TabItem("π Input & Search", id="input_tab"):
|
584 |
-
with gr.Row(equal_height=True):
|
585 |
-
with gr.Column(scale=1):
|
586 |
-
gr.Markdown("### π Repository IDs")
|
587 |
-
repo_id_input = gr.Textbox(
|
588 |
-
label="Repository IDs",
|
589 |
-
lines=8,
|
590 |
-
placeholder="microsoft/DialoGPT-medium\nopenai/whisper\nhuggingface/transformers",
|
591 |
-
info="Enter repo IDs separated by commas or new lines"
|
592 |
-
)
|
593 |
-
submit_repo_btn = gr.Button("π Submit Repositories", variant="primary", size="lg")
|
594 |
-
|
595 |
-
with gr.Column(scale=1):
|
596 |
-
gr.Markdown("### π Keyword Search")
|
597 |
-
keyword_input = gr.Textbox(
|
598 |
-
label="Search Keywords",
|
599 |
-
lines=8,
|
600 |
-
placeholder="text generation\nimage classification\nsentiment analysis",
|
601 |
-
info="Enter keywords to find relevant repositories"
|
602 |
-
)
|
603 |
-
search_btn = gr.Button("π Search Repositories", variant="primary", size="lg")
|
604 |
-
|
605 |
-
status_box_input = gr.Textbox(label="π Status", interactive=False, lines=2)
|
606 |
-
|
607 |
-
# --- Analysis Tab ---
|
608 |
-
with gr.TabItem("π¬ Analysis", id="analysis_tab"):
|
609 |
-
gr.Markdown("### π§ͺ Repository Analysis Engine")
|
610 |
-
|
611 |
-
# Display current user requirements
|
612 |
-
with gr.Row():
|
613 |
-
current_requirements_display = gr.Textbox(
|
614 |
-
label="π Current User Requirements",
|
615 |
-
interactive=False,
|
616 |
-
lines=3,
|
617 |
-
info="Requirements extracted from AI chat conversation for relevance rating"
|
618 |
-
)
|
619 |
-
|
620 |
-
with gr.Row():
|
621 |
-
analyze_all_btn = gr.Button("π Analyze All Repositories", variant="primary", size="lg", scale=1)
|
622 |
-
with gr.Column(scale=2):
|
623 |
-
status_box_analysis = gr.Textbox(label="π Analysis Status", interactive=False, lines=2)
|
624 |
-
|
625 |
-
# Progress bar for batch analysis
|
626 |
-
with gr.Row():
|
627 |
-
analysis_progress = gr.Progress()
|
628 |
-
# progress_display = gr.Textbox(
|
629 |
-
# label="π Batch Analysis Progress",
|
630 |
-
# interactive=False,
|
631 |
-
# lines=2,
|
632 |
-
# visible=False,
|
633 |
-
# info="Shows progress when analyzing all repositories"
|
634 |
-
# )
|
635 |
-
|
636 |
-
with gr.Row(equal_height=True):
|
637 |
-
# with gr.Column():
|
638 |
-
# content_output = gr.Textbox(
|
639 |
-
# label="π Repository Content",
|
640 |
-
# lines=20,
|
641 |
-
# show_copy_button=True,
|
642 |
-
# info="Raw content extracted from the repository"
|
643 |
-
# )
|
644 |
-
# with gr.Column():
|
645 |
-
# summary_output = gr.Textbox(
|
646 |
-
# label="π― AI Analysis Summary",
|
647 |
-
# lines=20,
|
648 |
-
# show_copy_button=True,
|
649 |
-
# info="Detailed analysis and insights from AI"
|
650 |
-
# )
|
651 |
-
pass
|
652 |
-
|
653 |
-
gr.Markdown("### π Results Dashboard")
|
654 |
-
|
655 |
-
# Top 3 Most Relevant Repositories (initially hidden)
|
656 |
-
with gr.Column(visible=False) as top_repos_section:
|
657 |
-
gr.Markdown("### π Top 3 Most Relevant Repositories")
|
658 |
-
gr.Markdown("π― **These are the highest-rated repositories based on your requirements:**")
|
659 |
-
top_repos_df = gr.Dataframe(
|
660 |
-
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
661 |
-
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
662 |
-
wrap=True,
|
663 |
-
interactive=False
|
664 |
-
)
|
665 |
-
|
666 |
-
gr.Markdown("π‘ **Tip:** Full text is displayed directly in the table. Click on repository names to explore or visit them!")
|
667 |
-
|
668 |
-
# Text expansion modal for showing full content (kept for backwards compatibility)
|
669 |
-
with gr.Row():
|
670 |
-
with gr.Column():
|
671 |
-
text_expansion_modal = gr.Column(visible=False)
|
672 |
-
with text_expansion_modal:
|
673 |
-
gr.Markdown("### π Full Content View")
|
674 |
-
expanded_content_title = gr.Textbox(
|
675 |
-
label="Content Type",
|
676 |
-
interactive=False,
|
677 |
-
info="Full text content for the selected field"
|
678 |
-
)
|
679 |
-
expanded_content_text = gr.Textbox(
|
680 |
-
label="Full Text",
|
681 |
-
lines=10,
|
682 |
-
interactive=False,
|
683 |
-
show_copy_button=True,
|
684 |
-
info="Complete untruncated content"
|
685 |
-
)
|
686 |
-
close_text_modal_btn = gr.Button("β Close", size="lg")
|
687 |
-
|
688 |
-
# Modal popup for repository action selection
|
689 |
-
with gr.Row():
|
690 |
-
with gr.Column():
|
691 |
-
repo_action_modal = gr.Column(visible=False)
|
692 |
-
with repo_action_modal:
|
693 |
-
gr.Markdown("### π Repository Actions")
|
694 |
-
selected_repo_display = gr.Textbox(
|
695 |
-
label="Selected Repository",
|
696 |
-
interactive=False,
|
697 |
-
info="Choose what you'd like to do with this repository"
|
698 |
-
)
|
699 |
-
with gr.Row():
|
700 |
-
visit_repo_btn = gr.Button("π Visit Hugging Face Space", variant="primary", size="lg")
|
701 |
-
explore_repo_btn = gr.Button("π Open in Repo Explorer", variant="secondary", size="lg")
|
702 |
-
cancel_modal_btn = gr.Button("β Cancel", size="lg")
|
703 |
-
|
704 |
-
gr.Markdown("### π All Analysis Results")
|
705 |
-
df_output = gr.Dataframe(
|
706 |
-
headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"],
|
707 |
-
column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"],
|
708 |
-
wrap=True,
|
709 |
-
interactive=False
|
710 |
-
)
|
711 |
-
|
712 |
-
# --- Chatbot Tab ---
|
713 |
-
with gr.TabItem("π€ AI Assistant", id="chatbot_tab"):
|
714 |
-
gr.Markdown("### π¬ Intelligent Repository Discovery")
|
715 |
-
|
716 |
-
chatbot = gr.Chatbot(
|
717 |
-
label="π€ AI Assistant",
|
718 |
-
height=450,
|
719 |
-
type="messages",
|
720 |
-
avatar_images=(
|
721 |
-
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
722 |
-
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
|
723 |
-
),
|
724 |
-
show_copy_button=True
|
725 |
-
)
|
726 |
-
|
727 |
-
with gr.Row():
|
728 |
-
msg_input = gr.Textbox(
|
729 |
-
label="π Your Message",
|
730 |
-
placeholder="Tell me about your ideal repository...",
|
731 |
-
lines=1,
|
732 |
-
scale=4,
|
733 |
-
info="Describe what you're looking for"
|
734 |
-
)
|
735 |
-
send_btn = gr.Button("π€ Send", variant="primary", scale=1)
|
736 |
-
end_chat_btn = gr.Button("π― Extract Keywords", scale=1)
|
737 |
-
use_keywords_btn = gr.Button("π Search Now", variant="primary", scale=1)
|
738 |
-
|
739 |
-
with gr.Row():
|
740 |
-
with gr.Column():
|
741 |
-
extracted_keywords_output = gr.Textbox(
|
742 |
-
label="π·οΈ Extracted Keywords",
|
743 |
-
interactive=False,
|
744 |
-
show_copy_button=True,
|
745 |
-
info="AI-generated search terms from our conversation"
|
746 |
-
)
|
747 |
-
with gr.Column():
|
748 |
-
status_box_chatbot = gr.Textbox(
|
749 |
-
label="π Chat Status",
|
750 |
-
interactive=False,
|
751 |
-
info="Current conversation status"
|
752 |
-
)
|
753 |
-
|
754 |
-
# --- Repo Explorer Tab ---
|
755 |
-
with gr.TabItem("π Repo Explorer", id="repo_explorer_tab"):
|
756 |
-
repo_components, repo_states = create_repo_explorer_tab()
|
757 |
-
|
758 |
-
# --- Footer ---
|
759 |
-
gr.Markdown(
|
760 |
-
"""
|
761 |
-
<div style="text-align: center; padding: 30px 20px; margin-top: 40px; background: rgba(255, 255, 255, 0.1); border-radius: 16px; backdrop-filter: blur(10px);">
|
762 |
-
<p style="margin: 0; color: rgba(255, 255, 255, 0.8); font-size: 0.95rem; font-weight: 500;">
|
763 |
-
π Powered by <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Gradio</span>
|
764 |
-
& <span style="background: linear-gradient(45deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">Hugging Face</span>
|
765 |
-
</p>
|
766 |
-
<div style="height: 2px; width: 60px; background: linear-gradient(45deg, #667eea, #764ba2); margin: 16px auto; border-radius: 1px;"></div>
|
767 |
-
</div>
|
768 |
-
"""
|
769 |
-
)
|
770 |
-
|
771 |
-
# --- Event Handler Functions ---
|
772 |
-
|
773 |
-
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
774 |
-
"""Processes submitted repo IDs, updates state, and prepares for analysis."""
|
775 |
-
if not text:
|
776 |
-
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
|
777 |
-
|
778 |
-
repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
|
779 |
-
write_repos_to_csv(repo_ids)
|
780 |
-
df = format_dataframe_for_display(read_csv_to_dataframe())
|
781 |
-
status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
|
782 |
-
return repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
783 |
-
|
784 |
-
def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
|
785 |
-
"""Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
|
786 |
-
if not keywords:
|
787 |
-
return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
|
788 |
-
|
789 |
-
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
|
790 |
-
repo_ids = []
|
791 |
-
for kw in keyword_list:
|
792 |
-
repo_ids.extend(search_top_spaces(kw, limit=5))
|
793 |
-
|
794 |
-
unique_repo_ids = list(dict.fromkeys(repo_ids))
|
795 |
-
write_repos_to_csv(unique_repo_ids)
|
796 |
-
df = format_dataframe_for_display(read_csv_to_dataframe())
|
797 |
-
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
|
798 |
-
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
|
799 |
-
|
800 |
-
def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str:
|
801 |
-
"""Extract user requirements from chatbot conversation."""
|
802 |
-
if not history:
|
803 |
-
return ""
|
804 |
-
|
805 |
-
user_messages = []
|
806 |
-
for msg in history:
|
807 |
-
if msg.get('role') == 'user':
|
808 |
-
user_messages.append(msg.get('content', ''))
|
809 |
-
|
810 |
-
if not user_messages:
|
811 |
-
return ""
|
812 |
-
|
813 |
-
# Combine all user messages as requirements
|
814 |
-
requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()])
|
815 |
-
return requirements
|
816 |
-
|
817 |
-
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
|
818 |
-
"""Appends the user's message to the history, preparing for the bot's response."""
|
819 |
-
# Initialize chatbot with welcome message if empty
|
820 |
-
if not history:
|
821 |
-
history = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
|
822 |
-
|
823 |
-
if user_message:
|
824 |
-
history.append({"role": "user", "content": user_message})
|
825 |
-
return history, ""
|
826 |
-
|
827 |
-
def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
828 |
-
"""Generates and appends the bot's response using the compatible history format."""
|
829 |
-
if not history or history[-1]["role"] != "user":
|
830 |
-
return history
|
831 |
-
|
832 |
-
user_message = history[-1]["content"]
|
833 |
-
# Convert all messages *before* the last user message into tuples for the API
|
834 |
-
tuple_history_for_api = convert_messages_to_tuples(history[:-1])
|
835 |
-
|
836 |
-
response = chat_with_user(user_message, tuple_history_for_api)
|
837 |
-
history.append({"role": "assistant", "content": response})
|
838 |
-
return history
|
839 |
-
|
840 |
-
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str, str]:
|
841 |
-
"""Ends the chat, extracts and sanitizes keywords from the conversation, and extracts user requirements."""
|
842 |
-
if not history:
|
843 |
-
return "", "Status: Chat is empty, nothing to analyze.", ""
|
844 |
-
|
845 |
-
# Convert the full, valid history for the extraction logic
|
846 |
-
tuple_history = convert_messages_to_tuples(history)
|
847 |
-
if not tuple_history:
|
848 |
-
return "", "Status: No completed conversations to analyze.", ""
|
849 |
-
|
850 |
-
# Get raw keywords string from the LLM
|
851 |
-
raw_keywords_str = extract_keywords_from_conversation(tuple_history)
|
852 |
-
|
853 |
-
# Sanitize the LLM output to extract only keyword-like parts.
|
854 |
-
# A keyword can contain letters, numbers, underscores, spaces, and hyphens.
|
855 |
-
cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str)
|
856 |
-
|
857 |
-
# Trim whitespace from each found keyword and filter out any empty strings
|
858 |
-
cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()]
|
859 |
-
|
860 |
-
if not cleaned_keywords:
|
861 |
-
return "", f"Status: Could not extract valid keywords. Raw LLM output: '{raw_keywords_str}'", ""
|
862 |
-
|
863 |
-
# Join them into a clean, comma-separated string for the search tool
|
864 |
-
final_keywords_str = ", ".join(cleaned_keywords)
|
865 |
-
|
866 |
-
# Extract user requirements for analysis
|
867 |
-
user_requirements = extract_user_requirements_from_chat(history)
|
868 |
-
|
869 |
-
status = "Status: Keywords extracted. User requirements saved for analysis."
|
870 |
-
return final_keywords_str, status, user_requirements
|
871 |
-
|
872 |
-
def handle_dataframe_select(evt: gr.SelectData, df_data) -> Tuple[str, Any, Any, str, str, Any, str]:
|
873 |
-
"""Handle dataframe row selection - only repo ID (column 0) shows modal since full text is now displayed directly."""
|
874 |
-
print(f"DEBUG: Selection event triggered!")
|
875 |
-
print(f"DEBUG: evt = {evt}")
|
876 |
-
print(f"DEBUG: df_data type = {type(df_data)}")
|
877 |
-
|
878 |
-
if evt is None:
|
879 |
-
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
880 |
-
|
881 |
-
try:
|
882 |
-
# Get the selected row and column from the event
|
883 |
-
row_idx = evt.index[0]
|
884 |
-
col_idx = evt.index[1]
|
885 |
-
print(f"DEBUG: Selected row {row_idx}, column {col_idx}")
|
886 |
-
|
887 |
-
# Handle pandas DataFrame
|
888 |
-
if isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data):
|
889 |
-
|
890 |
-
if col_idx == 0: # Repository name column - show action modal
|
891 |
-
repo_id = df_data.iloc[row_idx, 0]
|
892 |
-
print(f"DEBUG: Extracted repo_id = '{repo_id}'")
|
893 |
-
|
894 |
-
if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan':
|
895 |
-
clean_repo_id = str(repo_id).strip()
|
896 |
-
logger.info(f"Showing modal for repository: {clean_repo_id}")
|
897 |
-
return clean_repo_id, gr.update(visible=True), gr.update(), "", "", gr.update(visible=False), clean_repo_id
|
898 |
-
|
899 |
-
# For content columns (1,2,3) and relevance (4), do nothing since full text is shown directly
|
900 |
-
else:
|
901 |
-
print(f"DEBUG: Clicked on column {col_idx}, full text already shown in table")
|
902 |
-
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
903 |
-
else:
|
904 |
-
print(f"DEBUG: df_data is not a DataFrame or row_idx {row_idx} out of range")
|
905 |
-
|
906 |
-
except Exception as e:
|
907 |
-
print(f"DEBUG: Exception occurred: {e}")
|
908 |
-
logger.error(f"Error handling dataframe selection: {e}")
|
909 |
-
|
910 |
-
return "", gr.update(visible=False), gr.update(), "", "", gr.update(visible=False), ""
|
911 |
-
|
912 |
-
def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any]:
|
913 |
-
"""Analyzes all repositories in the CSV file with progress tracking."""
|
914 |
-
if not repo_ids:
|
915 |
-
return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first.", pd.DataFrame(), gr.update(visible=False)
|
916 |
-
|
917 |
-
total_repos = len(repo_ids)
|
918 |
-
|
919 |
-
try:
|
920 |
-
# Start the progress tracking
|
921 |
-
progress(0, desc="Initializing batch analysis...")
|
922 |
-
|
923 |
-
successful_analyses = 0
|
924 |
-
failed_analyses = 0
|
925 |
-
csv_update_failures = 0
|
926 |
-
|
927 |
-
for i, repo_id in enumerate(repo_ids):
|
928 |
-
# Update progress
|
929 |
-
progress_percent = (i / total_repos)
|
930 |
-
progress(progress_percent, desc=f"Analyzing {repo_id} ({i+1}/{total_repos})")
|
931 |
-
|
932 |
-
try:
|
933 |
-
logger.info(f"Batch analysis: Processing {repo_id} ({i+1}/{total_repos})")
|
934 |
-
|
935 |
-
# Analyze the repository
|
936 |
-
content, summary, df = analyze_and_update_single_repo(repo_id, user_requirements)
|
937 |
-
|
938 |
-
# Verify the CSV was actually updated by checking if the repo has analysis data
|
939 |
-
updated_df = read_csv_to_dataframe()
|
940 |
-
repo_updated = False
|
941 |
-
|
942 |
-
for idx, row in updated_df.iterrows():
|
943 |
-
if row["repo id"] == repo_id:
|
944 |
-
# Check if any analysis field is populated
|
945 |
-
if (row.get("strength", "").strip() or
|
946 |
-
row.get("weaknesses", "").strip() or
|
947 |
-
row.get("speciality", "").strip() or
|
948 |
-
row.get("relevance rating", "").strip()):
|
949 |
-
repo_updated = True
|
950 |
-
break
|
951 |
-
|
952 |
-
if repo_updated:
|
953 |
-
successful_analyses += 1
|
954 |
-
else:
|
955 |
-
# CSV update failed - try once more
|
956 |
-
logger.warning(f"CSV update failed for {repo_id}, attempting retry...")
|
957 |
-
time.sleep(0.5) # Wait a bit longer
|
958 |
-
|
959 |
-
# Force re-read and re-update
|
960 |
-
df_retry = read_csv_to_dataframe()
|
961 |
-
retry_success = False
|
962 |
-
|
963 |
-
# Re-parse the analysis if available
|
964 |
-
if summary and "JSON extraction: SUCCESS" in summary:
|
965 |
-
# Extract the analysis from summary - this is a fallback
|
966 |
-
logger.info(f"Attempting to re-update CSV for {repo_id}")
|
967 |
-
content_retry, summary_retry, df_retry = analyze_and_update_single_repo(repo_id, user_requirements)
|
968 |
-
|
969 |
-
# Check again
|
970 |
-
final_df = read_csv_to_dataframe()
|
971 |
-
for idx, row in final_df.iterrows():
|
972 |
-
if row["repo id"] == repo_id:
|
973 |
-
if (row.get("strength", "").strip() or
|
974 |
-
row.get("weaknesses", "").strip() or
|
975 |
-
row.get("speciality", "").strip() or
|
976 |
-
row.get("relevance rating", "").strip()):
|
977 |
-
retry_success = True
|
978 |
-
break
|
979 |
-
|
980 |
-
if retry_success:
|
981 |
-
successful_analyses += 1
|
982 |
-
else:
|
983 |
-
csv_update_failures += 1
|
984 |
-
|
985 |
-
# Longer delay to prevent file conflicts
|
986 |
-
time.sleep(0.3)
|
987 |
-
|
988 |
-
except Exception as e:
|
989 |
-
logger.error(f"Error analyzing {repo_id}: {e}")
|
990 |
-
failed_analyses += 1
|
991 |
-
# Still wait to prevent rapid failures
|
992 |
-
time.sleep(0.2)
|
993 |
-
|
994 |
-
# Complete the progress
|
995 |
-
progress(1.0, desc="Batch analysis completed!")
|
996 |
-
|
997 |
-
# Get final updated dataframe
|
998 |
-
updated_df = read_csv_to_dataframe()
|
999 |
-
|
1000 |
-
# Filter out rows with no analysis data for consistent display with top 3
|
1001 |
-
analyzed_df = updated_df.copy()
|
1002 |
-
analyzed_df = analyzed_df[
|
1003 |
-
(analyzed_df['strength'].str.strip() != '') |
|
1004 |
-
(analyzed_df['weaknesses'].str.strip() != '') |
|
1005 |
-
(analyzed_df['speciality'].str.strip() != '') |
|
1006 |
-
(analyzed_df['relevance rating'].str.strip() != '')
|
1007 |
-
]
|
1008 |
-
|
1009 |
-
# Get top 3 most relevant repositories using full data
|
1010 |
-
top_repos = get_top_relevant_repos(updated_df, user_requirements, top_n=3)
|
1011 |
-
|
1012 |
-
# Final status with detailed breakdown
|
1013 |
-
final_status = f"π Batch Analysis Complete!\nβ
Successful: {successful_analyses}/{total_repos}\nβ Failed: {failed_analyses}/{total_repos}"
|
1014 |
-
if csv_update_failures > 0:
|
1015 |
-
final_status += f"\nβ οΈ CSV Update Issues: {csv_update_failures}/{total_repos}"
|
1016 |
-
|
1017 |
-
# Add top repos info if available
|
1018 |
-
if not top_repos.empty:
|
1019 |
-
final_status += f"\n\nπ Top {len(top_repos)} most relevant repositories selected!"
|
1020 |
-
|
1021 |
-
# Show top repos section if we have results
|
1022 |
-
show_top_section = gr.update(visible=not top_repos.empty)
|
1023 |
-
|
1024 |
-
logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues")
|
1025 |
-
return format_dataframe_for_display(analyzed_df), final_status, format_dataframe_for_display(top_repos), show_top_section
|
1026 |
-
|
1027 |
-
except Exception as e:
|
1028 |
-
logger.error(f"Error in batch analysis: {e}")
|
1029 |
-
error_status = f"β Batch analysis failed: {e}"
|
1030 |
-
return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False)
|
1031 |
-
|
1032 |
-
def handle_visit_repo(repo_id: str) -> Tuple[Any, str]:
|
1033 |
-
"""Handle visiting the Hugging Face Space for the repository."""
|
1034 |
-
if repo_id and repo_id.strip():
|
1035 |
-
hf_url = f"https://huggingface.co/spaces/{repo_id.strip()}"
|
1036 |
-
logger.info(f"User chose to visit: {hf_url}")
|
1037 |
-
return gr.update(visible=False), hf_url
|
1038 |
-
return gr.update(visible=False), ""
|
1039 |
-
|
1040 |
-
def handle_explore_repo(selected_repo_id: str) -> Tuple[Any, Any, Any]:
|
1041 |
-
"""Handle navigating to the repo explorer and populate the repo ID."""
|
1042 |
-
logger.info(f"DEBUG: handle_explore_repo called with selected_repo_id: '{selected_repo_id}'")
|
1043 |
-
logger.info(f"DEBUG: selected_repo_id type: {type(selected_repo_id)}")
|
1044 |
-
logger.info(f"DEBUG: selected_repo_id length: {len(selected_repo_id) if selected_repo_id else 'None'}")
|
1045 |
-
|
1046 |
-
if selected_repo_id and selected_repo_id.strip() and selected_repo_id.strip() != 'nan':
|
1047 |
-
clean_repo_id = selected_repo_id.strip()
|
1048 |
-
return (
|
1049 |
-
gr.update(visible=False), # close modal
|
1050 |
-
gr.update(selected="repo_explorer_tab"), # switch tab
|
1051 |
-
gr.update(value=clean_repo_id) # populate repo explorer input
|
1052 |
-
)
|
1053 |
-
else:
|
1054 |
-
return (
|
1055 |
-
gr.update(visible=False), # close modal
|
1056 |
-
gr.update(selected="repo_explorer_tab"), # switch tab
|
1057 |
-
gr.update() # don't change repo explorer input
|
1058 |
-
)
|
1059 |
-
|
1060 |
-
def handle_cancel_modal() -> Any:
|
1061 |
-
"""Handle closing the modal."""
|
1062 |
-
return gr.update(visible=False)
|
1063 |
-
|
1064 |
-
def handle_close_text_modal() -> Any:
|
1065 |
-
"""Handle closing the text expansion modal."""
|
1066 |
-
return gr.update(visible=False)
|
1067 |
-
|
1068 |
-
def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, Any, Any, List[Dict[str, str]], str, str, str]:
|
1069 |
-
"""Reset everything to initial state - clear all data, CSV, and UI components."""
|
1070 |
-
try:
|
1071 |
-
# Clear the CSV file
|
1072 |
-
if os.path.exists(CSV_FILE):
|
1073 |
-
os.remove(CSV_FILE)
|
1074 |
-
logger.info("CSV file deleted for reset")
|
1075 |
-
|
1076 |
-
# Create empty dataframe
|
1077 |
-
empty_df = pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
|
1078 |
-
|
1079 |
-
# Reset state variables
|
1080 |
-
repo_ids_reset = []
|
1081 |
-
current_idx_reset = 0
|
1082 |
-
user_requirements_reset = ""
|
1083 |
-
|
1084 |
-
# Reset status
|
1085 |
-
status_reset = "Status: Everything has been reset. Ready to start fresh!"
|
1086 |
-
|
1087 |
-
# Reset UI components
|
1088 |
-
current_requirements_reset = "No requirements extracted yet."
|
1089 |
-
extracted_keywords_reset = ""
|
1090 |
-
|
1091 |
-
# Reset chatbot to initial message
|
1092 |
-
chatbot_reset = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}]
|
1093 |
-
|
1094 |
-
logger.info("Complete system reset performed")
|
1095 |
-
|
1096 |
-
return (
|
1097 |
-
repo_ids_reset, # repo_ids_state
|
1098 |
-
current_idx_reset, # current_repo_idx_state
|
1099 |
-
user_requirements_reset, # user_requirements_state
|
1100 |
-
empty_df, # df_output
|
1101 |
-
empty_df, # top_repos_df
|
1102 |
-
gr.update(visible=False), # top_repos_section
|
1103 |
-
gr.update(visible=False), # repo_action_modal
|
1104 |
-
gr.update(visible=False), # text_expansion_modal
|
1105 |
-
chatbot_reset, # chatbot
|
1106 |
-
status_reset, # status_box_analysis
|
1107 |
-
current_requirements_reset, # current_requirements_display
|
1108 |
-
extracted_keywords_reset # extracted_keywords_output
|
1109 |
-
)
|
1110 |
-
|
1111 |
-
except Exception as e:
|
1112 |
-
logger.error(f"Error during reset: {e}")
|
1113 |
-
error_status = f"Reset failed: {e}"
|
1114 |
-
return (
|
1115 |
-
[], # repo_ids_state
|
1116 |
-
0, # current_repo_idx_state
|
1117 |
-
"", # user_requirements_state
|
1118 |
-
pd.DataFrame(), # df_output
|
1119 |
-
pd.DataFrame(), # top_repos_df
|
1120 |
-
gr.update(visible=False), # top_repos_section
|
1121 |
-
gr.update(visible=False), # repo_action_modal
|
1122 |
-
gr.update(visible=False), # text_expansion_modal
|
1123 |
-
[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot
|
1124 |
-
error_status, # status_box_analysis
|
1125 |
-
"No requirements extracted yet.", # current_requirements_display
|
1126 |
-
"" # extracted_keywords_output
|
1127 |
-
)
|
1128 |
-
|
1129 |
-
# --- Component Event Wiring ---
|
1130 |
-
|
1131 |
-
# Initialize chatbot with welcome message on app load
|
1132 |
-
app.load(
|
1133 |
-
fn=lambda: [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
|
1134 |
-
outputs=[chatbot]
|
1135 |
-
)
|
1136 |
-
|
1137 |
-
# Input Tab
|
1138 |
-
submit_repo_btn.click(
|
1139 |
-
fn=handle_repo_id_submission,
|
1140 |
-
inputs=[repo_id_input],
|
1141 |
-
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1142 |
-
)
|
1143 |
-
search_btn.click(
|
1144 |
-
fn=handle_keyword_search,
|
1145 |
-
inputs=[keyword_input],
|
1146 |
-
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1147 |
-
)
|
1148 |
-
|
1149 |
-
# Analysis Tab
|
1150 |
-
analyze_all_btn.click(
|
1151 |
-
fn=lambda: None, # No need to show progress display since it's commented out
|
1152 |
-
outputs=[]
|
1153 |
-
).then(
|
1154 |
-
fn=handle_analyze_all_repos,
|
1155 |
-
inputs=[repo_ids_state, user_requirements_state],
|
1156 |
-
outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section]
|
1157 |
-
)
|
1158 |
-
|
1159 |
-
# Chatbot Tab
|
1160 |
-
msg_input.submit(
|
1161 |
-
fn=handle_user_message,
|
1162 |
-
inputs=[msg_input, chatbot],
|
1163 |
-
outputs=[chatbot, msg_input]
|
1164 |
-
).then(
|
1165 |
-
fn=handle_bot_response,
|
1166 |
-
inputs=[chatbot],
|
1167 |
-
outputs=[chatbot]
|
1168 |
-
)
|
1169 |
-
send_btn.click(
|
1170 |
-
fn=handle_user_message,
|
1171 |
-
inputs=[msg_input, chatbot],
|
1172 |
-
outputs=[chatbot, msg_input]
|
1173 |
-
).then(
|
1174 |
-
fn=handle_bot_response,
|
1175 |
-
inputs=[chatbot],
|
1176 |
-
outputs=[chatbot]
|
1177 |
-
)
|
1178 |
-
end_chat_btn.click(
|
1179 |
-
fn=handle_end_chat,
|
1180 |
-
inputs=[chatbot],
|
1181 |
-
outputs=[extracted_keywords_output, status_box_chatbot, user_requirements_state]
|
1182 |
-
).then(
|
1183 |
-
fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.",
|
1184 |
-
inputs=[user_requirements_state],
|
1185 |
-
outputs=[current_requirements_display]
|
1186 |
-
)
|
1187 |
-
use_keywords_btn.click(
|
1188 |
-
fn=handle_keyword_search,
|
1189 |
-
inputs=[extracted_keywords_output],
|
1190 |
-
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
1191 |
-
)
|
1192 |
-
|
1193 |
-
# Repo Explorer Tab
|
1194 |
-
setup_repo_explorer_events(repo_components, repo_states)
|
1195 |
-
|
1196 |
-
# Modal button events
|
1197 |
-
visit_repo_btn.click(
|
1198 |
-
fn=handle_visit_repo,
|
1199 |
-
inputs=[selected_repo_display],
|
1200 |
-
outputs=[repo_action_modal, selected_repo_display],
|
1201 |
-
js="(repo_id) => { if(repo_id && repo_id.trim()) { window.open('https://huggingface.co/spaces/' + repo_id.trim(), '_blank'); } }"
|
1202 |
-
)
|
1203 |
-
explore_repo_btn.click(
|
1204 |
-
fn=handle_explore_repo,
|
1205 |
-
inputs=[selected_repo_id_state],
|
1206 |
-
outputs=[
|
1207 |
-
repo_action_modal,
|
1208 |
-
tabs,
|
1209 |
-
repo_components["repo_explorer_input"]
|
1210 |
-
],
|
1211 |
-
js="""(repo_id) => {
|
1212 |
-
console.log('DEBUG: Navigate to repo explorer for:', repo_id);
|
1213 |
-
setTimeout(() => {
|
1214 |
-
window.scrollTo({top: 0, behavior: 'smooth'});
|
1215 |
-
}, 200);
|
1216 |
-
}"""
|
1217 |
-
)
|
1218 |
-
cancel_modal_btn.click(
|
1219 |
-
fn=handle_cancel_modal,
|
1220 |
-
outputs=[repo_action_modal]
|
1221 |
-
)
|
1222 |
-
|
1223 |
-
# Text expansion modal events
|
1224 |
-
close_text_modal_btn.click(
|
1225 |
-
fn=handle_close_text_modal,
|
1226 |
-
outputs=[text_expansion_modal]
|
1227 |
-
)
|
1228 |
-
|
1229 |
-
# Add dataframe selection event
|
1230 |
-
df_output.select(
|
1231 |
-
fn=handle_dataframe_select,
|
1232 |
-
inputs=[df_output],
|
1233 |
-
outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal, selected_repo_id_state]
|
1234 |
-
)
|
1235 |
-
|
1236 |
-
# Add selection event for top repositories dataframe too
|
1237 |
-
top_repos_df.select(
|
1238 |
-
fn=handle_dataframe_select,
|
1239 |
-
inputs=[top_repos_df],
|
1240 |
-
outputs=[selected_repo_display, repo_action_modal, tabs, expanded_content_title, expanded_content_text, text_expansion_modal, selected_repo_id_state]
|
1241 |
-
)
|
1242 |
-
|
1243 |
-
# Reset button event
|
1244 |
-
reset_all_btn.click(
|
1245 |
-
fn=handle_reset_everything,
|
1246 |
-
outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section, repo_action_modal, text_expansion_modal, chatbot, status_box_analysis, current_requirements_display, extracted_keywords_output]
|
1247 |
-
)
|
1248 |
-
|
1249 |
-
return app
|
1250 |
-
|
1251 |
-
if __name__ == "__main__":
|
1252 |
-
app = create_ui()
|
1253 |
-
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
repo_explorer_old.py
DELETED
@@ -1,200 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
from typing import List, Dict, Tuple
|
5 |
-
from analyzer import combine_repo_files_for_llm, handle_load_repository
|
6 |
-
from hf_utils import download_filtered_space_files
|
7 |
-
|
8 |
-
# Setup logger
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
def create_repo_explorer_tab() -> Tuple[Dict[str, gr.components.Component], Dict[str, gr.State]]:
|
12 |
-
"""
|
13 |
-
Creates the Repo Explorer tab content and returns the component references and state variables.
|
14 |
-
"""
|
15 |
-
|
16 |
-
# State variables for repo explorer
|
17 |
-
states = {
|
18 |
-
"repo_context_summary": gr.State(""),
|
19 |
-
"current_repo_id": gr.State("")
|
20 |
-
}
|
21 |
-
|
22 |
-
gr.Markdown("### ποΈ Deep Dive into a Specific Repository")
|
23 |
-
|
24 |
-
with gr.Row():
|
25 |
-
with gr.Column(scale=2):
|
26 |
-
repo_explorer_input = gr.Textbox(
|
27 |
-
label="π Repository ID",
|
28 |
-
placeholder="microsoft/DialoGPT-medium",
|
29 |
-
info="Enter a Hugging Face repository ID to explore"
|
30 |
-
)
|
31 |
-
with gr.Column(scale=1):
|
32 |
-
load_repo_btn = gr.Button("π Load Repository", variant="primary", size="lg")
|
33 |
-
|
34 |
-
with gr.Row():
|
35 |
-
repo_status_display = gr.Textbox(
|
36 |
-
label="π Repository Status",
|
37 |
-
interactive=False,
|
38 |
-
lines=3,
|
39 |
-
info="Current repository loading status and basic info"
|
40 |
-
)
|
41 |
-
|
42 |
-
with gr.Row():
|
43 |
-
with gr.Column(scale=2):
|
44 |
-
repo_chatbot = gr.Chatbot(
|
45 |
-
label="π€ Repository Assistant",
|
46 |
-
height=400,
|
47 |
-
type="messages",
|
48 |
-
avatar_images=(
|
49 |
-
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
50 |
-
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
|
51 |
-
),
|
52 |
-
show_copy_button=True,
|
53 |
-
value=[] # Start empty - welcome message will appear only after repo is loaded
|
54 |
-
)
|
55 |
-
|
56 |
-
with gr.Row():
|
57 |
-
repo_msg_input = gr.Textbox(
|
58 |
-
label="π Ask about this repository",
|
59 |
-
placeholder="What does this repository do? How do I use it?",
|
60 |
-
lines=1,
|
61 |
-
scale=4,
|
62 |
-
info="Ask anything about the loaded repository"
|
63 |
-
)
|
64 |
-
repo_send_btn = gr.Button("π€ Send", variant="primary", scale=1)
|
65 |
-
|
66 |
-
# with gr.Column(scale=1):
|
67 |
-
# # Repository content preview
|
68 |
-
# repo_content_display = gr.Textbox(
|
69 |
-
# label="π Repository Content Preview",
|
70 |
-
# lines=20,
|
71 |
-
# show_copy_button=True,
|
72 |
-
# interactive=False,
|
73 |
-
# info="Overview of the loaded repository structure and content"
|
74 |
-
# )
|
75 |
-
|
76 |
-
# Component references
|
77 |
-
components = {
|
78 |
-
"repo_explorer_input": repo_explorer_input,
|
79 |
-
"load_repo_btn": load_repo_btn,
|
80 |
-
"repo_status_display": repo_status_display,
|
81 |
-
"repo_chatbot": repo_chatbot,
|
82 |
-
"repo_msg_input": repo_msg_input,
|
83 |
-
"repo_send_btn": repo_send_btn,
|
84 |
-
# "repo_content_display": repo_content_display
|
85 |
-
}
|
86 |
-
|
87 |
-
return components, states
|
88 |
-
|
89 |
-
def handle_repo_user_message(user_message: str, history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> Tuple[List[Dict[str, str]], str]:
|
90 |
-
"""Handle user messages in the repo-specific chatbot."""
|
91 |
-
if not repo_context_summary.strip():
|
92 |
-
return history, ""
|
93 |
-
|
94 |
-
# Initialize with repository-specific welcome message if empty
|
95 |
-
if not history:
|
96 |
-
welcome_msg = f"Hello! I'm your assistant for the '{repo_id}' repository. I have analyzed all the files and created a comprehensive understanding of this repository. I'm ready to answer any questions about its functionality, usage, architecture, and more. What would you like to know?"
|
97 |
-
history = [{"role": "assistant", "content": welcome_msg}]
|
98 |
-
|
99 |
-
if user_message:
|
100 |
-
history.append({"role": "user", "content": user_message})
|
101 |
-
return history, ""
|
102 |
-
|
103 |
-
def handle_repo_bot_response(history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> List[Dict[str, str]]:
|
104 |
-
"""Generate bot response for repo-specific questions using comprehensive context."""
|
105 |
-
if not history or history[-1]["role"] != "user" or not repo_context_summary.strip():
|
106 |
-
return history
|
107 |
-
|
108 |
-
user_message = history[-1]["content"]
|
109 |
-
|
110 |
-
# Create a specialized prompt using the comprehensive context summary
|
111 |
-
repo_system_prompt = f"""You are an expert assistant for the Hugging Face repository '{repo_id}'.
|
112 |
-
You have comprehensive knowledge about this repository based on detailed analysis of all its files and components.
|
113 |
-
|
114 |
-
Use the following comprehensive analysis to answer user questions accurately and helpfully:
|
115 |
-
|
116 |
-
{repo_context_summary}
|
117 |
-
|
118 |
-
Instructions:
|
119 |
-
- Answer questions clearly and conversationally about this specific repository
|
120 |
-
- Reference specific components, functions, or features when relevant
|
121 |
-
- Provide practical guidance on installation, usage, and implementation
|
122 |
-
- If asked about code details, refer to the analysis above
|
123 |
-
- Be helpful and informative while staying focused on this repository
|
124 |
-
- If something isn't covered in the analysis, acknowledge the limitation
|
125 |
-
|
126 |
-
Answer the user's question based on your comprehensive knowledge of this repository."""
|
127 |
-
|
128 |
-
try:
|
129 |
-
from openai import OpenAI
|
130 |
-
client = OpenAI(api_key=os.getenv("modal_api"))
|
131 |
-
client.base_url = os.getenv("base_url")
|
132 |
-
|
133 |
-
response = client.chat.completions.create(
|
134 |
-
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
135 |
-
messages=[
|
136 |
-
{"role": "system", "content": repo_system_prompt},
|
137 |
-
{"role": "user", "content": user_message}
|
138 |
-
],
|
139 |
-
max_tokens=1024,
|
140 |
-
temperature=0.7
|
141 |
-
)
|
142 |
-
|
143 |
-
bot_response = response.choices[0].message.content
|
144 |
-
history.append({"role": "assistant", "content": bot_response})
|
145 |
-
|
146 |
-
except Exception as e:
|
147 |
-
logger.error(f"Error generating repo bot response: {e}")
|
148 |
-
error_response = f"I apologize, but I encountered an error while processing your question: {e}"
|
149 |
-
history.append({"role": "assistant", "content": error_response})
|
150 |
-
|
151 |
-
return history
|
152 |
-
|
153 |
-
def initialize_repo_chatbot(repo_status: str, repo_id: str, repo_context_summary: str) -> List[Dict[str, str]]:
|
154 |
-
"""Initialize the repository chatbot with a welcome message after successful repo loading."""
|
155 |
-
# Only initialize if repository was loaded successfully
|
156 |
-
if repo_context_summary.strip() and "successfully" in repo_status.lower():
|
157 |
-
welcome_msg = f"π Welcome! I've successfully analyzed the **{repo_id}** repository.\n\nπ§ **I now have comprehensive knowledge of:**\nβ’ All files and code structure\nβ’ Key features and capabilities\nβ’ Installation and usage instructions\nβ’ Architecture and implementation details\nβ’ Dependencies and requirements\n\nπ¬ **Ask me anything about this repository!** \nFor example:\nβ’ \"What does this repository do?\"\nβ’ \"How do I install and use it?\"\nβ’ \"What are the main components?\"\nβ’ \"Show me usage examples\"\n\nWhat would you like to know? π€"
|
158 |
-
return [{"role": "assistant", "content": welcome_msg}]
|
159 |
-
else:
|
160 |
-
# Keep chatbot empty if loading failed
|
161 |
-
return []
|
162 |
-
|
163 |
-
def setup_repo_explorer_events(components: Dict[str, gr.components.Component], states: Dict[str, gr.State]):
|
164 |
-
"""Setup event handlers for the repo explorer components."""
|
165 |
-
|
166 |
-
# Load repository event
|
167 |
-
components["load_repo_btn"].click(
|
168 |
-
fn=handle_load_repository,
|
169 |
-
inputs=[components["repo_explorer_input"]],
|
170 |
-
outputs=[components["repo_status_display"], states["repo_context_summary"]]
|
171 |
-
).then(
|
172 |
-
fn=lambda repo_id: repo_id,
|
173 |
-
inputs=[components["repo_explorer_input"]],
|
174 |
-
outputs=[states["current_repo_id"]]
|
175 |
-
).then(
|
176 |
-
fn=initialize_repo_chatbot,
|
177 |
-
inputs=[components["repo_status_display"], states["current_repo_id"], states["repo_context_summary"]],
|
178 |
-
outputs=[components["repo_chatbot"]]
|
179 |
-
)
|
180 |
-
|
181 |
-
# Chat message submission events
|
182 |
-
components["repo_msg_input"].submit(
|
183 |
-
fn=handle_repo_user_message,
|
184 |
-
inputs=[components["repo_msg_input"], components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
185 |
-
outputs=[components["repo_chatbot"], components["repo_msg_input"]]
|
186 |
-
).then(
|
187 |
-
fn=handle_repo_bot_response,
|
188 |
-
inputs=[components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
189 |
-
outputs=[components["repo_chatbot"]]
|
190 |
-
)
|
191 |
-
|
192 |
-
components["repo_send_btn"].click(
|
193 |
-
fn=handle_repo_user_message,
|
194 |
-
inputs=[components["repo_msg_input"], components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
195 |
-
outputs=[components["repo_chatbot"], components["repo_msg_input"]]
|
196 |
-
).then(
|
197 |
-
fn=handle_repo_bot_response,
|
198 |
-
inputs=[components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
199 |
-
outputs=[components["repo_chatbot"]]
|
200 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
"""This simple script shows how to interact with an OpenAI-compatible server from a client."""
|
2 |
-
|
3 |
-
# import argparse
|
4 |
-
|
5 |
-
# import modal
|
6 |
-
from openai import OpenAI
|
7 |
-
import os
|
8 |
-
|
9 |
-
client = OpenAI(api_key=os.getenv("modal_api"))
|
10 |
-
client.base_url = (
|
11 |
-
"https://alexprincecursor--example-vllm-openai-compatible-serve.modal.run/v1/"
|
12 |
-
)
|
13 |
-
|
14 |
-
response = client.chat.completions.create(
|
15 |
-
model="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16", # GPT-4.1 mini
|
16 |
-
messages=[
|
17 |
-
{"role": "system", "content": "You are a rockstar lyric generator. You are given a song and you need to generate a lyric for it."},
|
18 |
-
{"role": "user", "content":"The song is 'Bohemian Rhapsody' by Queen."}
|
19 |
-
],
|
20 |
-
max_tokens=512,
|
21 |
-
temperature=0.7
|
22 |
-
)
|
23 |
-
print(response.choices[0].message.content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_vectorization.py
DELETED
@@ -1,135 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
"""
|
3 |
-
Simple test script to verify vectorization functionality.
|
4 |
-
Run this to check if sentence-transformers is working correctly.
|
5 |
-
"""
|
6 |
-
|
7 |
-
import os
|
8 |
-
import sys
|
9 |
-
|
10 |
-
def test_vectorization():
|
11 |
-
"""Test the vectorization functionality."""
|
12 |
-
print("π§ͺ Testing vectorization functionality...")
|
13 |
-
|
14 |
-
# Test 1: Import dependencies
|
15 |
-
print("\n1. Testing imports...")
|
16 |
-
try:
|
17 |
-
import numpy as np
|
18 |
-
print("β
numpy imported successfully")
|
19 |
-
except ImportError as e:
|
20 |
-
print(f"β numpy import failed: {e}")
|
21 |
-
return False
|
22 |
-
|
23 |
-
try:
|
24 |
-
from sentence_transformers import SentenceTransformer
|
25 |
-
print("β
sentence-transformers imported successfully")
|
26 |
-
except ImportError as e:
|
27 |
-
print(f"β sentence-transformers import failed: {e}")
|
28 |
-
print("Install with: pip install sentence-transformers")
|
29 |
-
return False
|
30 |
-
|
31 |
-
# Test 2: Load model
|
32 |
-
print("\n2. Testing model loading...")
|
33 |
-
try:
|
34 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
35 |
-
print("β
SentenceTransformer model loaded successfully")
|
36 |
-
except Exception as e:
|
37 |
-
print(f"β Model loading failed: {e}")
|
38 |
-
return False
|
39 |
-
|
40 |
-
# Test 3: Create embeddings
|
41 |
-
print("\n3. Testing embedding creation...")
|
42 |
-
try:
|
43 |
-
test_texts = [
|
44 |
-
"This is a Python function for machine learning",
|
45 |
-
"Here's a repository configuration file",
|
46 |
-
"Installation instructions for the project"
|
47 |
-
]
|
48 |
-
embeddings = model.encode(test_texts)
|
49 |
-
print(f"β
Created embeddings with shape: {embeddings.shape}")
|
50 |
-
except Exception as e:
|
51 |
-
print(f"β Embedding creation failed: {e}")
|
52 |
-
return False
|
53 |
-
|
54 |
-
# Test 4: Test similarity calculation
|
55 |
-
print("\n4. Testing similarity calculation...")
|
56 |
-
try:
|
57 |
-
query_embedding = model.encode(["Python code example"])
|
58 |
-
similarities = []
|
59 |
-
for embedding in embeddings:
|
60 |
-
similarity = np.dot(query_embedding[0], embedding) / (
|
61 |
-
np.linalg.norm(query_embedding[0]) * np.linalg.norm(embedding)
|
62 |
-
)
|
63 |
-
similarities.append(similarity)
|
64 |
-
print(f"β
Similarity scores: {[f'{s:.3f}' for s in similarities]}")
|
65 |
-
except Exception as e:
|
66 |
-
print(f"β Similarity calculation failed: {e}")
|
67 |
-
return False
|
68 |
-
|
69 |
-
# Test 5: Test repo_explorer integration
|
70 |
-
print("\n5. Testing repo_explorer integration...")
|
71 |
-
try:
|
72 |
-
from repo_explorer import SimpleVectorStore, vectorize_repository_content
|
73 |
-
|
74 |
-
# Create test repository content
|
75 |
-
test_repo_content = """# Test Repository
|
76 |
-
import numpy as np
|
77 |
-
import pandas as pd
|
78 |
-
|
79 |
-
def main():
|
80 |
-
print("Hello, world!")
|
81 |
-
|
82 |
-
class DataProcessor:
|
83 |
-
def __init__(self):
|
84 |
-
self.data = []
|
85 |
-
|
86 |
-
def process(self, data):
|
87 |
-
return data.upper()
|
88 |
-
|
89 |
-
if __name__ == "__main__":
|
90 |
-
main()
|
91 |
-
"""
|
92 |
-
|
93 |
-
# Test vectorization
|
94 |
-
success = vectorize_repository_content(test_repo_content, "test/repo")
|
95 |
-
if success:
|
96 |
-
print("β
Repository vectorization successful")
|
97 |
-
|
98 |
-
# Test vector store
|
99 |
-
from repo_explorer import vector_store
|
100 |
-
stats = vector_store.get_stats()
|
101 |
-
print(f"β
Vector store stats: {stats}")
|
102 |
-
|
103 |
-
# Test search
|
104 |
-
results = vector_store.search("Python function", top_k=2)
|
105 |
-
if results:
|
106 |
-
print(f"β
Vector search returned {len(results)} results")
|
107 |
-
for i, (chunk, similarity, metadata) in enumerate(results):
|
108 |
-
print(f" Result {i+1}: similarity={similarity:.3f}")
|
109 |
-
else:
|
110 |
-
print("β οΈ Vector search returned no results")
|
111 |
-
else:
|
112 |
-
print("β Repository vectorization failed")
|
113 |
-
return False
|
114 |
-
|
115 |
-
except Exception as e:
|
116 |
-
print(f"β repo_explorer integration test failed: {e}")
|
117 |
-
return False
|
118 |
-
|
119 |
-
print("\nπ All tests passed! Vectorization is working correctly.")
|
120 |
-
return True
|
121 |
-
|
122 |
-
if __name__ == "__main__":
|
123 |
-
print("Repository Explorer Vectorization Test")
|
124 |
-
print("=" * 45)
|
125 |
-
|
126 |
-
success = test_vectorization()
|
127 |
-
|
128 |
-
if success:
|
129 |
-
print("\nβ
Ready to use vectorization in repo explorer!")
|
130 |
-
print(" The sentence-transformers model will be downloaded on first use.")
|
131 |
-
else:
|
132 |
-
print("\nβ Vectorization setup incomplete.")
|
133 |
-
print(" Make sure to install: pip install sentence-transformers numpy")
|
134 |
-
|
135 |
-
sys.exit(0 if success else 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|