new_bot
Browse files- analyzer.py +2 -2
- app.py +9 -0
- repo_explorer.py +331 -0
analyzer.py
CHANGED
@@ -140,7 +140,7 @@ def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
|
|
140 |
{"role": "system", "content": chunk_prompt},
|
141 |
{"role": "user", "content": code}
|
142 |
],
|
143 |
-
|
144 |
temperature=0.4
|
145 |
)
|
146 |
return response.choices[0].message.content
|
@@ -190,7 +190,7 @@ def analyze_combined_file(output_file="combined_repo.txt", user_requirements: st
|
|
190 |
try:
|
191 |
with open(output_file, "r", encoding="utf-8") as f:
|
192 |
lines = f.readlines()
|
193 |
-
chunk_size =
|
194 |
chunk_jsons = []
|
195 |
for i in range(0, len(lines), chunk_size):
|
196 |
chunk = "".join(lines[i:i+chunk_size])
|
|
|
140 |
{"role": "system", "content": chunk_prompt},
|
141 |
{"role": "user", "content": code}
|
142 |
],
|
143 |
+
|
144 |
temperature=0.4
|
145 |
)
|
146 |
return response.choices[0].message.content
|
|
|
190 |
try:
|
191 |
with open(output_file, "r", encoding="utf-8") as f:
|
192 |
lines = f.readlines()
|
193 |
+
chunk_size = 1200
|
194 |
chunk_jsons = []
|
195 |
for i in range(0, len(lines), chunk_size):
|
196 |
chunk = "".join(lines[i:i+chunk_size])
|
app.py
CHANGED
@@ -10,6 +10,7 @@ import os
|
|
10 |
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
|
11 |
from hf_utils import download_space_repo, search_top_spaces
|
12 |
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
|
|
13 |
|
14 |
# --- Configuration ---
|
15 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
@@ -242,6 +243,8 @@ def create_ui() -> gr.Blocks:
|
|
242 |
repo_ids_state = gr.State([])
|
243 |
current_repo_idx_state = gr.State(0)
|
244 |
user_requirements_state = gr.State("") # Store user requirements from chatbot
|
|
|
|
|
245 |
|
246 |
gr.Markdown(
|
247 |
"""
|
@@ -365,6 +368,9 @@ def create_ui() -> gr.Blocks:
|
|
365 |
interactive=False,
|
366 |
info="Current conversation status"
|
367 |
)
|
|
|
|
|
|
|
368 |
|
369 |
# --- Footer ---
|
370 |
gr.Markdown(
|
@@ -561,6 +567,9 @@ def create_ui() -> gr.Blocks:
|
|
561 |
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
562 |
)
|
563 |
|
|
|
|
|
|
|
564 |
return app
|
565 |
|
566 |
if __name__ == "__main__":
|
|
|
10 |
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
|
11 |
from hf_utils import download_space_repo, search_top_spaces
|
12 |
from chatbot_page import chat_with_user, extract_keywords_from_conversation
|
13 |
+
from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events
|
14 |
|
15 |
# --- Configuration ---
|
16 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
243 |
repo_ids_state = gr.State([])
|
244 |
current_repo_idx_state = gr.State(0)
|
245 |
user_requirements_state = gr.State("") # Store user requirements from chatbot
|
246 |
+
loaded_repo_content_state = gr.State("") # Store loaded repository content
|
247 |
+
current_repo_id_state = gr.State("") # Store current repository ID
|
248 |
|
249 |
gr.Markdown(
|
250 |
"""
|
|
|
368 |
interactive=False,
|
369 |
info="Current conversation status"
|
370 |
)
|
371 |
+
|
372 |
+
# --- Repo Explorer Tab ---
|
373 |
+
repo_explorer_tab, repo_components, repo_states = create_repo_explorer_tab()
|
374 |
|
375 |
# --- Footer ---
|
376 |
gr.Markdown(
|
|
|
567 |
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
|
568 |
)
|
569 |
|
570 |
+
# Repo Explorer Tab
|
571 |
+
setup_repo_explorer_events(repo_components, repo_states)
|
572 |
+
|
573 |
return app
|
574 |
|
575 |
if __name__ == "__main__":
|
repo_explorer.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
from typing import List, Dict, Tuple
|
5 |
+
from analyzer import combine_repo_files_for_llm
|
6 |
+
from hf_utils import download_space_repo
|
7 |
+
|
8 |
+
# Setup logger
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
|
12 |
+
"""
|
13 |
+
Analyze a repository chunk to create conversational context for the chatbot.
|
14 |
+
This creates summaries focused on helping users understand the repository.
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
from openai import OpenAI
|
18 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
19 |
+
client.base_url = os.getenv("base_url")
|
20 |
+
|
21 |
+
context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.
|
22 |
+
|
23 |
+
Create a concise but informative summary that helps understand:
|
24 |
+
- What this code section does
|
25 |
+
- Key functions, classes, or components
|
26 |
+
- Important features or capabilities
|
27 |
+
- How it relates to the overall repository purpose
|
28 |
+
- Any notable patterns or technologies used
|
29 |
+
|
30 |
+
Focus on information that would be useful for answering user questions about the repository.
|
31 |
+
|
32 |
+
Repository chunk:
|
33 |
+
{chunk}
|
34 |
+
|
35 |
+
Provide a clear, conversational summary in 2-3 paragraphs:"""
|
36 |
+
|
37 |
+
response = client.chat.completions.create(
|
38 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
39 |
+
messages=[
|
40 |
+
{"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
|
41 |
+
{"role": "user", "content": context_prompt}
|
42 |
+
],
|
43 |
+
max_tokens=600, # Increased for more detailed analysis with larger chunks
|
44 |
+
temperature=0.3
|
45 |
+
)
|
46 |
+
|
47 |
+
return response.choices[0].message.content
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
logger.error(f"Error analyzing chunk for context: {e}")
|
51 |
+
return f"Code section analysis unavailable: {e}"
|
52 |
+
|
53 |
+
def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
|
54 |
+
"""
|
55 |
+
Create a comprehensive context summary by analyzing the repository in chunks.
|
56 |
+
Returns a detailed summary that the chatbot can use to answer questions.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
lines = repo_content.split('\n')
|
60 |
+
chunk_size = 1200 # Increased for better context and fewer API calls
|
61 |
+
chunk_summaries = []
|
62 |
+
|
63 |
+
logger.info(f"Analyzing repository {repo_id} in chunks for chatbot context")
|
64 |
+
|
65 |
+
for i in range(0, len(lines), chunk_size):
|
66 |
+
chunk = '\n'.join(lines[i:i+chunk_size])
|
67 |
+
if chunk.strip(): # Only analyze non-empty chunks
|
68 |
+
summary = analyze_repo_chunk_for_context(chunk, repo_id)
|
69 |
+
chunk_summaries.append(f"=== Section {len(chunk_summaries) + 1} ===\n{summary}")
|
70 |
+
|
71 |
+
# Create final comprehensive summary
|
72 |
+
try:
|
73 |
+
from openai import OpenAI
|
74 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
75 |
+
client.base_url = os.getenv("base_url")
|
76 |
+
|
77 |
+
final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.
|
78 |
+
|
79 |
+
Section Summaries:
|
80 |
+
{chr(10).join(chunk_summaries)}
|
81 |
+
|
82 |
+
Create a well-structured overview covering:
|
83 |
+
1. Repository Purpose & Main Functionality
|
84 |
+
2. Key Components & Architecture
|
85 |
+
3. Important Features & Capabilities
|
86 |
+
4. Technology Stack & Dependencies
|
87 |
+
5. Usage Patterns & Examples
|
88 |
+
|
89 |
+
Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
|
90 |
+
|
91 |
+
response = client.chat.completions.create(
|
92 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
93 |
+
messages=[
|
94 |
+
{"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
|
95 |
+
{"role": "user", "content": final_prompt}
|
96 |
+
],
|
97 |
+
max_tokens=1500, # Increased for more comprehensive summaries
|
98 |
+
temperature=0.3
|
99 |
+
)
|
100 |
+
|
101 |
+
final_summary = response.choices[0].message.content
|
102 |
+
|
103 |
+
# Combine everything for the chatbot context
|
104 |
+
full_context = f"""=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===
|
105 |
+
|
106 |
+
{final_summary}
|
107 |
+
|
108 |
+
=== DETAILED SECTION SUMMARIES ===
|
109 |
+
{chr(10).join(chunk_summaries)}"""
|
110 |
+
|
111 |
+
logger.info(f"Created comprehensive context summary for {repo_id}")
|
112 |
+
return full_context
|
113 |
+
|
114 |
+
except Exception as e:
|
115 |
+
logger.error(f"Error creating final summary: {e}")
|
116 |
+
# Fallback to just section summaries
|
117 |
+
return f"=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===\n\n" + '\n\n'.join(chunk_summaries)
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Error creating repo context summary: {e}")
|
121 |
+
return f"Repository analysis unavailable: {e}"
|
122 |
+
|
123 |
+
def create_repo_explorer_tab() -> Tuple[gr.TabItem, Dict[str, gr.components.Component], Dict[str, gr.State]]:
|
124 |
+
"""
|
125 |
+
Creates the Repo Explorer tab with all its components and returns the tab,
|
126 |
+
component references, and state variables.
|
127 |
+
"""
|
128 |
+
|
129 |
+
# State variables for repo explorer
|
130 |
+
states = {
|
131 |
+
"repo_context_summary": gr.State(""),
|
132 |
+
"current_repo_id": gr.State("")
|
133 |
+
}
|
134 |
+
|
135 |
+
with gr.TabItem("π Repo Explorer", id="repo_explorer_tab") as tab:
|
136 |
+
gr.Markdown("### ποΈ Deep Dive into a Specific Repository")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column(scale=2):
|
140 |
+
repo_explorer_input = gr.Textbox(
|
141 |
+
label="π Repository ID",
|
142 |
+
placeholder="microsoft/DialoGPT-medium",
|
143 |
+
info="Enter a Hugging Face repository ID to explore"
|
144 |
+
)
|
145 |
+
with gr.Column(scale=1):
|
146 |
+
load_repo_btn = gr.Button("π Load Repository", variant="primary", size="lg")
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
repo_status_display = gr.Textbox(
|
150 |
+
label="π Repository Status",
|
151 |
+
interactive=False,
|
152 |
+
lines=3,
|
153 |
+
info="Current repository loading status and basic info"
|
154 |
+
)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column(scale=2):
|
158 |
+
repo_chatbot = gr.Chatbot(
|
159 |
+
label="π€ Repository Assistant",
|
160 |
+
height=500,
|
161 |
+
type="messages",
|
162 |
+
avatar_images=(
|
163 |
+
"https://cdn-icons-png.flaticon.com/512/149/149071.png",
|
164 |
+
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png"
|
165 |
+
),
|
166 |
+
show_copy_button=True,
|
167 |
+
info="Ask questions about the loaded repository"
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
repo_msg_input = gr.Textbox(
|
172 |
+
label="π Ask about this repository",
|
173 |
+
placeholder="What does this repository do? How do I use it?",
|
174 |
+
lines=1,
|
175 |
+
scale=4,
|
176 |
+
info="Ask anything about the loaded repository"
|
177 |
+
)
|
178 |
+
repo_send_btn = gr.Button("π€ Send", variant="primary", scale=1)
|
179 |
+
|
180 |
+
with gr.Column(scale=1):
|
181 |
+
repo_content_display = gr.Textbox(
|
182 |
+
label="π Repository Content Preview",
|
183 |
+
lines=25,
|
184 |
+
interactive=False,
|
185 |
+
show_copy_button=True,
|
186 |
+
info="Preview of the repository files and content"
|
187 |
+
)
|
188 |
+
|
189 |
+
# Component references
|
190 |
+
components = {
|
191 |
+
"repo_explorer_input": repo_explorer_input,
|
192 |
+
"load_repo_btn": load_repo_btn,
|
193 |
+
"repo_status_display": repo_status_display,
|
194 |
+
"repo_chatbot": repo_chatbot,
|
195 |
+
"repo_msg_input": repo_msg_input,
|
196 |
+
"repo_send_btn": repo_send_btn,
|
197 |
+
"repo_content_display": repo_content_display
|
198 |
+
}
|
199 |
+
|
200 |
+
return tab, components, states
|
201 |
+
|
202 |
+
def handle_load_repository(repo_id: str) -> Tuple[str, str, str]:
|
203 |
+
"""Load a specific repository and prepare it for exploration with chunk-based analysis."""
|
204 |
+
if not repo_id.strip():
|
205 |
+
return "", "Status: Please enter a repository ID.", ""
|
206 |
+
|
207 |
+
try:
|
208 |
+
logger.info(f"Loading repository for exploration: {repo_id}")
|
209 |
+
|
210 |
+
# Download and combine repository files
|
211 |
+
download_space_repo(repo_id, local_dir="repo_files")
|
212 |
+
txt_path = combine_repo_files_for_llm()
|
213 |
+
|
214 |
+
with open(txt_path, "r", encoding="utf-8") as f:
|
215 |
+
repo_content = f.read()
|
216 |
+
|
217 |
+
# Create a preview (first 2000 characters)
|
218 |
+
preview = repo_content[:2000] + "..." if len(repo_content) > 2000 else repo_content
|
219 |
+
|
220 |
+
status = f"β
Repository '{repo_id}' loaded successfully!\nπ Files processed and ready for exploration.\nπ Analyzing repository in chunks for comprehensive context...\nπ¬ You can now ask questions about this repository."
|
221 |
+
|
222 |
+
# Create comprehensive context summary using chunk analysis
|
223 |
+
logger.info(f"Creating context summary for {repo_id}")
|
224 |
+
context_summary = create_repo_context_summary(repo_content, repo_id)
|
225 |
+
|
226 |
+
logger.info(f"Repository {repo_id} loaded and analyzed successfully for exploration")
|
227 |
+
return status, preview, context_summary
|
228 |
+
|
229 |
+
except Exception as e:
|
230 |
+
logger.error(f"Error loading repository {repo_id}: {e}")
|
231 |
+
error_status = f"β Error loading repository: {e}"
|
232 |
+
return error_status, "", ""
|
233 |
+
|
234 |
+
def handle_repo_user_message(user_message: str, history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> Tuple[List[Dict[str, str]], str]:
|
235 |
+
"""Handle user messages in the repo-specific chatbot."""
|
236 |
+
if not repo_context_summary.strip():
|
237 |
+
return history, ""
|
238 |
+
|
239 |
+
# Initialize with repository-specific welcome message if empty
|
240 |
+
if not history:
|
241 |
+
welcome_msg = f"Hello! I'm your assistant for the '{repo_id}' repository. I have analyzed all the files and created a comprehensive understanding of this repository. I'm ready to answer any questions about its functionality, usage, architecture, and more. What would you like to know?"
|
242 |
+
history = [{"role": "assistant", "content": welcome_msg}]
|
243 |
+
|
244 |
+
if user_message:
|
245 |
+
history.append({"role": "user", "content": user_message})
|
246 |
+
return history, ""
|
247 |
+
|
248 |
+
def handle_repo_bot_response(history: List[Dict[str, str]], repo_context_summary: str, repo_id: str) -> List[Dict[str, str]]:
|
249 |
+
"""Generate bot response for repo-specific questions using comprehensive context."""
|
250 |
+
if not history or history[-1]["role"] != "user" or not repo_context_summary.strip():
|
251 |
+
return history
|
252 |
+
|
253 |
+
user_message = history[-1]["content"]
|
254 |
+
|
255 |
+
# Create a specialized prompt using the comprehensive context summary
|
256 |
+
repo_system_prompt = f"""You are an expert assistant for the Hugging Face repository '{repo_id}'.
|
257 |
+
You have comprehensive knowledge about this repository based on detailed analysis of all its files and components.
|
258 |
+
|
259 |
+
Use the following comprehensive analysis to answer user questions accurately and helpfully:
|
260 |
+
|
261 |
+
{repo_context_summary}
|
262 |
+
|
263 |
+
Instructions:
|
264 |
+
- Answer questions clearly and conversationally about this specific repository
|
265 |
+
- Reference specific components, functions, or features when relevant
|
266 |
+
- Provide practical guidance on installation, usage, and implementation
|
267 |
+
- If asked about code details, refer to the analysis above
|
268 |
+
- Be helpful and informative while staying focused on this repository
|
269 |
+
- If something isn't covered in the analysis, acknowledge the limitation
|
270 |
+
|
271 |
+
Answer the user's question based on your comprehensive knowledge of this repository."""
|
272 |
+
|
273 |
+
try:
|
274 |
+
from openai import OpenAI
|
275 |
+
client = OpenAI(api_key=os.getenv("modal_api"))
|
276 |
+
client.base_url = os.getenv("base_url")
|
277 |
+
|
278 |
+
response = client.chat.completions.create(
|
279 |
+
model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
|
280 |
+
messages=[
|
281 |
+
{"role": "system", "content": repo_system_prompt},
|
282 |
+
{"role": "user", "content": user_message}
|
283 |
+
],
|
284 |
+
max_tokens=1024,
|
285 |
+
temperature=0.7
|
286 |
+
)
|
287 |
+
|
288 |
+
bot_response = response.choices[0].message.content
|
289 |
+
history.append({"role": "assistant", "content": bot_response})
|
290 |
+
|
291 |
+
except Exception as e:
|
292 |
+
logger.error(f"Error generating repo bot response: {e}")
|
293 |
+
error_response = f"I apologize, but I encountered an error while processing your question: {e}"
|
294 |
+
history.append({"role": "assistant", "content": error_response})
|
295 |
+
|
296 |
+
return history
|
297 |
+
|
298 |
+
def setup_repo_explorer_events(components: Dict[str, gr.components.Component], states: Dict[str, gr.State]):
|
299 |
+
"""Setup event handlers for the repo explorer components."""
|
300 |
+
|
301 |
+
# Load repository event
|
302 |
+
components["load_repo_btn"].click(
|
303 |
+
fn=handle_load_repository,
|
304 |
+
inputs=[components["repo_explorer_input"]],
|
305 |
+
outputs=[components["repo_status_display"], components["repo_content_display"], states["repo_context_summary"]]
|
306 |
+
).then(
|
307 |
+
fn=lambda repo_id: repo_id,
|
308 |
+
inputs=[components["repo_explorer_input"]],
|
309 |
+
outputs=[states["current_repo_id"]]
|
310 |
+
)
|
311 |
+
|
312 |
+
# Chat message submission events
|
313 |
+
components["repo_msg_input"].submit(
|
314 |
+
fn=handle_repo_user_message,
|
315 |
+
inputs=[components["repo_msg_input"], components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
316 |
+
outputs=[components["repo_chatbot"], components["repo_msg_input"]]
|
317 |
+
).then(
|
318 |
+
fn=handle_repo_bot_response,
|
319 |
+
inputs=[components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
320 |
+
outputs=[components["repo_chatbot"]]
|
321 |
+
)
|
322 |
+
|
323 |
+
components["repo_send_btn"].click(
|
324 |
+
fn=handle_repo_user_message,
|
325 |
+
inputs=[components["repo_msg_input"], components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
326 |
+
outputs=[components["repo_chatbot"], components["repo_msg_input"]]
|
327 |
+
).then(
|
328 |
+
fn=handle_repo_bot_response,
|
329 |
+
inputs=[components["repo_chatbot"], states["repo_context_summary"], states["current_repo_id"]],
|
330 |
+
outputs=[components["repo_chatbot"]]
|
331 |
+
)
|