import gradio as gr import regex as re import csv import pandas as pd from typing import List, Dict, Tuple, Any import logging import os import time # Import core logic from other modules, as in app_old.py from analyzer import ( combine_repo_files_for_llm, parse_llm_json_response, analyze_combined_file, handle_load_repository ) from hf_utils import download_filtered_space_files, search_top_spaces from chatbot_page import chat_with_user, extract_keywords_from_conversation from repo_explorer import create_repo_explorer_tab, setup_repo_explorer_events, initialize_repo_chatbot # --- Configuration --- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) CSV_FILE = "repo_ids.csv" CHATBOT_SYSTEM_PROMPT = ( "You are a helpful assistant whose ONLY job is to gather information about the user's ideal repository requirements. " "DO NOT suggest any specific repositories or give repository recommendations. " "Your role is to ask clarifying questions to understand exactly what the user is looking for. " "Ask about their use case, preferred programming language, specific features needed, project type, etc. " "When you feel you have gathered enough detailed information about their requirements, " "tell the user: 'I think I have enough information about your requirements. I'll now search for relevant repositories automatically.' " "Focus on understanding their needs, not providing solutions." ) CHATBOT_INITIAL_MESSAGE = "Hello! I'm here to help you find the perfect Hugging Face repository. Tell me about your project - what are you trying to build? I'll ask some questions to understand your needs and then automatically find relevant repositories for you." # --- Helper Functions (Logic) --- def is_repo_id_format(text: str) -> bool: """Check if text looks like repository IDs (contains forward slashes).""" lines = [line.strip() for line in re.split(r'[\n,]+', text) if line.strip()] if not lines: return False # If most lines contain forward slashes, treat as repo IDs slash_count = sum(1 for line in lines if '/' in line) return slash_count >= len(lines) * 0.5 # At least 50% have slashes def should_auto_extract_keywords(history: List[Dict[str, str]]) -> bool: """Determine if we should automatically extract keywords from conversation.""" if not history or len(history) < 4: # Need at least 2 exchanges return False # Check if the last assistant message suggests we have enough info last_assistant_msg = "" for msg in reversed(history): if msg.get('role') == 'assistant': last_assistant_msg = msg.get('content', '').lower() break # Look for key phrases that indicate readiness ready_phrases = [ "enough information", "search for repositories", "find repositories", "look for repositories", "automatically", "ready to search" ] return any(phrase in last_assistant_msg for phrase in ready_phrases) def get_top_relevant_repos(df: pd.DataFrame, user_requirements: str, top_n: int = 3) -> pd.DataFrame: """ Uses LLM to select the top 3 most relevant repositories based on user requirements and analysis data. """ try: if df.empty: return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) # Filter out rows with no analysis data analyzed_df = df.copy() analyzed_df = analyzed_df[ (analyzed_df['strength'].str.strip() != '') | (analyzed_df['weaknesses'].str.strip() != '') | (analyzed_df['speciality'].str.strip() != '') | (analyzed_df['relevance rating'].str.strip() != '') ] if analyzed_df.empty: logger.warning("No analyzed repositories found for LLM selection") return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) # Create a prompt for the LLM csv_data = "" for idx, row in analyzed_df.iterrows(): csv_data += f"Repository: {row['repo id']}\n" csv_data += f"Strengths: {row['strength']}\n" csv_data += f"Weaknesses: {row['weaknesses']}\n" csv_data += f"Speciality: {row['speciality']}\n" csv_data += f"Relevance: {row['relevance rating']}\n\n" user_context = user_requirements if user_requirements.strip() else "General repository recommendation" prompt = f"""Based on the user's requirements and the analysis of repositories below, select the top {top_n} most relevant repositories. User Requirements: {user_context} Repository Analysis Data: {csv_data} Please analyze all repositories and select the {top_n} most relevant ones based on: 1. How well they match the user's specific requirements 2. Their strengths and capabilities 3. Their relevance rating 4. Their speciality alignment with user needs Return ONLY a JSON list of the repository IDs in order of relevance (most relevant first). Example format: ["repo1", "repo2", "repo3"] Selected repositories:""" try: from openai import OpenAI client = OpenAI(api_key=os.getenv("modal_api")) client.base_url = os.getenv("base_url") response = client.chat.completions.create( model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", messages=[ {"role": "system", "content": "You are an expert at analyzing and ranking repositories based on user requirements. Always return valid JSON."}, {"role": "user", "content": prompt} ], max_tokens=200, temperature=0.3 ) llm_response = response.choices[0].message.content.strip() logger.info(f"LLM response for top repos: {llm_response}") # Extract JSON from response import json import re # Try to find JSON array in the response json_match = re.search(r'\[.*\]', llm_response) if json_match: selected_repos = json.loads(json_match.group()) logger.info(f"LLM selected repositories: {selected_repos}") # Filter dataframe to only include selected repositories in order top_repos_list = [] for repo_id in selected_repos[:top_n]: matching_rows = analyzed_df[analyzed_df['repo id'] == repo_id] if not matching_rows.empty: top_repos_list.append(matching_rows.iloc[0]) if top_repos_list: top_repos = pd.DataFrame(top_repos_list) logger.info(f"Successfully selected {len(top_repos)} repositories using LLM") return top_repos # Fallback: if LLM response parsing fails, use first N analyzed repos logger.warning("Failed to parse LLM response, using fallback selection") return analyzed_df.head(top_n) except Exception as llm_error: logger.error(f"LLM selection failed: {llm_error}") # Fallback: return first N repositories with analysis data return analyzed_df.head(top_n) except Exception as e: logger.error(f"Error in LLM-based repo selection: {e}") return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) def write_repos_to_csv(repo_ids: List[str]) -> None: """Writes a list of repo IDs to the CSV file, overwriting the previous content.""" try: with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile: writer = csv.writer(csvfile) writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) for repo_id in repo_ids: writer.writerow([repo_id, "", "", "", ""]) logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}") except Exception as e: logger.error(f"Error writing to CSV: {e}") def format_text_for_dataframe(text: str, max_length: int = 200) -> str: """Format text for better display in dataframe by truncating and cleaning.""" if not text or pd.isna(text): return "" # Clean the text text = str(text).strip() # Remove excessive whitespace and newlines text = re.sub(r'\s+', ' ', text) # Truncate if too long if len(text) > max_length: text = text[:max_length-3] + "..." return text def read_csv_to_dataframe() -> pd.DataFrame: """Reads the CSV file into a pandas DataFrame with full text preserved.""" try: df = pd.read_csv(CSV_FILE, dtype=str).fillna('') # Keep the full text intact - don't truncate here # The truncation will be handled in the UI display layer return df except FileNotFoundError: return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) except Exception as e: logger.error(f"Error reading CSV: {e}") return pd.DataFrame() def format_dataframe_for_display(df: pd.DataFrame) -> pd.DataFrame: """Returns dataframe with full text (no truncation) for display.""" if df.empty: return df # Return the dataframe as-is without any text truncation # This will show the full text content in the CSV display return df.copy() def analyze_and_update_single_repo(repo_id: str, user_requirements: str = "") -> Tuple[str, str, pd.DataFrame]: """ Downloads, analyzes a single repo, updates the CSV, and returns results. Now includes user requirements for better relevance rating. This function combines the logic of downloading, analyzing, and updating the CSV for one repo. """ try: logger.info(f"Starting analysis for repo: {repo_id}") download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt']) txt_path = combine_repo_files_for_llm() with open(txt_path, "r", encoding="utf-8") as f: combined_content = f.read() llm_output = analyze_combined_file(txt_path, user_requirements) last_start = llm_output.rfind('{') last_end = llm_output.rfind('}') final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}" llm_json = parse_llm_json_response(final_json_str) summary = "" if isinstance(llm_json, dict) and "error" not in llm_json: strengths = llm_json.get("strength", "N/A") weaknesses = llm_json.get("weaknesses", "N/A") relevance = llm_json.get("relevance rating", "N/A") summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}\n\nRelevance: {relevance}" else: summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON." # Update CSV df = read_csv_to_dataframe() repo_found_in_df = False for idx, row in df.iterrows(): if row["repo id"] == repo_id: if isinstance(llm_json, dict): df.at[idx, "strength"] = llm_json.get("strength", "") df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "") df.at[idx, "speciality"] = llm_json.get("speciality", "") df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "") repo_found_in_df = True break if not repo_found_in_df: logger.warning(f"Repo ID {repo_id} not found in CSV for updating.") # Write CSV with better error handling and flushing try: df.to_csv(CSV_FILE, index=False) # Force file system flush os.sync() if hasattr(os, 'sync') else None logger.info(f"Successfully updated CSV for {repo_id}") except Exception as csv_error: logger.error(f"Failed to write CSV for {repo_id}: {csv_error}") # Try once more with a small delay time.sleep(0.2) try: df.to_csv(CSV_FILE, index=False) logger.info(f"Successfully updated CSV for {repo_id} on retry") except Exception as retry_error: logger.error(f"Failed to write CSV for {repo_id} on retry: {retry_error}") logger.info(f"Successfully analyzed and updated CSV for {repo_id}") return combined_content, summary, df except Exception as e: logger.error(f"An error occurred during analysis of {repo_id}: {e}") error_summary = f"Error analyzing repo: {e}" return "", error_summary, format_dataframe_for_display(read_csv_to_dataframe()) # --- NEW: Helper for Chat History Conversion --- def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]: """ Converts Gradio's 'messages' format to the old 'tuple' format for compatibility. This robust version correctly handles histories that start with an assistant message. """ tuple_history = [] # Iterate through the history to find user messages for i, msg in enumerate(history): if msg['role'] == 'user': # Once a user message is found, check if the next message is from the assistant if i + 1 < len(history) and history[i+1]['role'] == 'assistant': user_content = msg['content'] assistant_content = history[i+1]['content'] tuple_history.append((user_content, assistant_content)) return tuple_history # --- Gradio UI --- def create_ui() -> gr.Blocks: """Creates and configures the entire Gradio interface.""" css = """ /* Modern sleek design */ .gradio-container { font-family: 'Inter', 'system-ui', sans-serif; background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 100%); min-height: 100vh; } .gr-form { background: rgba(255, 255, 255, 0.95); backdrop-filter: blur(10px); border-radius: 16px; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1); padding: 24px; margin: 16px; border: 1px solid rgba(255, 255, 255, 0.2); } .gr-button { background: linear-gradient(45deg, #667eea, #764ba2); border: none; border-radius: 12px; color: white; font-weight: 600; padding: 12px 24px; transition: all 0.3s ease; box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4); } .gr-button:hover { transform: translateY(-2px); box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6); } .gr-textbox { border: 2px solid rgba(102, 126, 234, 0.2); border-radius: 12px; background: rgba(255, 255, 255, 0.9); transition: all 0.3s ease; } .gr-textbox:focus { border-color: #667eea; box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1); } .gr-panel { background: rgba(255, 255, 255, 0.95); border-radius: 16px; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1); border: 1px solid rgba(255, 255, 255, 0.2); } .gr-tab-nav { background: rgba(255, 255, 255, 0.95); border-radius: 12px 12px 0 0; backdrop-filter: blur(10px); } .gr-tab-nav button { background: transparent; border: none; padding: 16px 24px; font-weight: 600; color: #666; transition: all 0.3s ease; } .gr-tab-nav button.selected { background: linear-gradient(45deg, #667eea, #764ba2); color: white; border-radius: 8px; } .chatbot { border-radius: 16px; box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); } /* Hide Gradio footer */ footer { display: none !important; } /* Custom scrollbar */ ::-webkit-scrollbar { width: 8px; } ::-webkit-scrollbar-track { background: rgba(255, 255, 255, 0.1); border-radius: 4px; } ::-webkit-scrollbar-thumb { background: linear-gradient(45deg, #667eea, #764ba2); border-radius: 4px; } /* Improved dataframe styling for full text display */ .gr-dataframe { border-radius: 12px; overflow: hidden; box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1); background: rgba(255, 255, 255, 0.98); } .gr-dataframe table { width: 100%; table-layout: fixed; border-collapse: collapse; } /* Column width specifications for both dataframes */ .gr-dataframe th, .gr-dataframe td { padding: 12px 16px; text-align: left; border-bottom: 1px solid rgba(0, 0, 0, 0.1); font-size: 0.95rem; line-height: 1.4; } /* Specific column widths - applying to both dataframes */ .gr-dataframe th:nth-child(1), .gr-dataframe td:nth-child(1) { width: 16.67% !important; min-width: 16.67% !important; max-width: 16.67% !important; } .gr-dataframe th:nth-child(2), .gr-dataframe td:nth-child(2) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; } .gr-dataframe th:nth-child(3), .gr-dataframe td:nth-child(3) { width: 25% !important; min-width: 25% !important; max-width: 25% !important; } .gr-dataframe th:nth-child(4), .gr-dataframe td:nth-child(4) { width: 20.83% !important; min-width: 20.83% !important; max-width: 20.83% !important; } .gr-dataframe th:nth-child(5), .gr-dataframe td:nth-child(5) { width: 12.5% !important; min-width: 12.5% !important; max-width: 12.5% !important; } /* Additional specific targeting for both dataframes */ div[data-testid="dataframe"] table th:nth-child(1), div[data-testid="dataframe"] table td:nth-child(1) { width: 16.67% !important; } div[data-testid="dataframe"] table th:nth-child(2), div[data-testid="dataframe"] table td:nth-child(2) { width: 25% !important; } div[data-testid="dataframe"] table th:nth-child(3), div[data-testid="dataframe"] table td:nth-child(3) { width: 25% !important; } div[data-testid="dataframe"] table th:nth-child(4), div[data-testid="dataframe"] table td:nth-child(4) { width: 20.83% !important; } div[data-testid="dataframe"] table th:nth-child(5), div[data-testid="dataframe"] table td:nth-child(5) { width: 12.5% !important; } /* Make repository names clickable */ .gr-dataframe td:nth-child(1) { cursor: pointer; color: #667eea; font-weight: 600; transition: all 0.3s ease; } .gr-dataframe td:nth-child(1):hover { background-color: rgba(102, 126, 234, 0.1); color: #764ba2; transform: scale(1.02); } /* Content columns - readable styling with scroll for long text */ .gr-dataframe td:nth-child(2), .gr-dataframe td:nth-child(3), .gr-dataframe td:nth-child(4), .gr-dataframe td:nth-child(5) { cursor: default; font-size: 0.9rem; } .gr-dataframe tbody tr:hover { background-color: rgba(102, 126, 234, 0.05); } /* JavaScript for auto-scroll to top on tab change */ """ with gr.Blocks( theme=gr.themes.Soft( primary_hue="blue", secondary_hue="purple", neutral_hue="gray", font=["Inter", "system-ui", "sans-serif"] ), css=css, title="๐Ÿš€ HF Repo Analyzer" ) as app: # --- State Management --- # Using simple, separate state objects for robustness. repo_ids_state = gr.State([]) current_repo_idx_state = gr.State(0) user_requirements_state = gr.State("") # Store user requirements from chatbot loaded_repo_content_state = gr.State("") # Store loaded repository content current_repo_id_state = gr.State("") # Store current repository ID selected_repo_id_state = gr.State("") # Store selected repository ID for modal actions gr.Markdown( """

๐Ÿš€ HF Repo Analyzer

Discover, analyze, and evaluate Hugging Face repositories with AI-powered insights

""" ) # Global Reset and Help Buttons - visible on all tabs with gr.Row(): with gr.Column(scale=2): pass with gr.Column(scale=2): with gr.Row(): help_btn = gr.Button("โ“ Help", variant="secondary", size="lg", scale=1) reset_all_btn = gr.Button("๐Ÿ”„ Reset Everything", variant="stop", size="lg", scale=1) with gr.Column(scale=1): pass # Help Modal - visible when help button is clicked with gr.Row(): with gr.Column(): help_modal = gr.Column(visible=False) with help_modal: gr.Markdown( """

๐Ÿ“š How to Use HF Repo Analyzer

Step-by-step guide to find and analyze repositories

""" ) with gr.Accordion("๐Ÿš€ Method 1: AI Assistant (Recommended)", open=True): gr.Markdown( """ ### **Step 1: Start Conversation** - Go to the **๐Ÿค– AI Assistant** tab - Describe your project: *"I'm building a sentiment analysis tool"* - The AI will ask clarifying questions about your needs ### **Step 2: Let AI Work Its Magic** - Answer the AI's questions about your requirements - When ready, the AI will automatically: - Extract keywords from your conversation - Search for matching repositories - Analyze and rank them by relevance ### **Step 3: Review Results** - Interface automatically switches to **๐Ÿ”ฌ Analysis & Results** - View **Top 3** most relevant repositories - Browse detailed analysis with strengths/weaknesses - Click repository names to visit or explore them **๐Ÿ’ก Tip**: This method gives the best personalized results! """ ) with gr.Accordion("๐Ÿ“ Method 2: Smart Search (Direct Input)", open=False): gr.Markdown( """ ### **Step 1: Choose Input Type** Go to **๐Ÿ“ Smart Search** tab and enter either: **Repository IDs** (with `/`): ``` microsoft/DialoGPT-medium openai/whisper huggingface/transformers ``` **Keywords** (no `/`): ``` text generation image classification sentiment analysis ``` ### **Step 2: Auto-Detection & Processing** - System automatically detects input type - Repository IDs โ†’ Direct analysis - Keywords โ†’ Search + analysis - Enable **๐Ÿš€ Auto-analyze** for instant results ### **Step 3: Get Results** - Click **๐Ÿ” Find & Process Repositories** - View results in **๐Ÿ”ฌ Analysis & Results** tab """ ) with gr.Accordion("๐Ÿ”ฌ Understanding Analysis Results", open=False): gr.Markdown( """ ### **๐Ÿ† Top 3 Repositories** - AI-selected most relevant for your needs - Ranked by requirement matching and quality ### **๐Ÿ“Š Detailed Analysis Table** - **Repository**: Click names to visit/explore - **Strengths**: Key capabilities and advantages - **Weaknesses**: Limitations and considerations - **Speciality**: Primary use case and domain - **Relevance**: How well it matches your needs ### **๐Ÿ”— Quick Actions** Click repository names to: - **๐ŸŒ Visit Hugging Face Space**: See live demo - **๐Ÿ” Open in Repo Explorer**: Deep dive analysis """ ) with gr.Accordion("๐Ÿ” Repository Explorer Deep Dive", open=False): gr.Markdown( """ ### **Access Repository Explorer** - Click **๐Ÿ” Open in Repo Explorer** from results - Or manually enter repo ID in **๐Ÿ” Repo Explorer** tab ### **Features Available** - **Auto-loading**: Repository content analysis - **AI Chat**: Ask questions about the code - **File Exploration**: Browse repository structure - **Code Analysis**: Get explanations and insights ### **Sample Questions to Ask** - *"How do I use this repository?"* - *"What are the main functions?"* - *"Show me example usage"* - *"Explain the architecture"* """ ) with gr.Accordion("๐ŸŽฏ Pro Tips & Best Practices", open=False): gr.Markdown( """ ### **๐Ÿค– Getting Better AI Results** - Be specific about your use case - Mention programming language preferences - Describe your experience level - Include performance requirements ### **๐Ÿ” Search Optimization** - Use multiple relevant keywords - Try different keyword combinations - Check both general and specific terms ### **๐Ÿ“Š Analyzing Results** - Read both strengths AND weaknesses - Check speciality alignment with your needs - Use Repository Explorer for detailed investigation - Compare multiple options before deciding ### **๐Ÿ”„ Workflow Tips** - Start with AI Assistant for personalized results - Use Smart Search for known repositories - Explore multiple repositories before choosing - Save interesting repositories for later comparison """ ) with gr.Accordion("โš ๏ธ Important Notice: Server Startup Times", open=True): gr.Markdown( """

๐Ÿ• Model Response Times

If the AI model takes longer than 5 minutes to respond:
๐Ÿ“ก The servers are starting up from sleep mode
โณ This happens when the service hasn't been used recently
๐Ÿš€ Once live, responses will be fast and smooth
๐Ÿ’ Thank you for your patience!

### **What to Expect** - **First request**: May take 3-7 minutes (server startup) - **Subsequent requests**: Fast responses (10-30 seconds) - **If timeout occurs**: Simply retry your request ### **Best Practices During Startup** - Start with a simple conversation or small repository list - Avoid analyzing many repositories simultaneously on first use - Once the first response comes through, normal speed resumes """ ) with gr.Row(): close_help_btn = gr.Button("โœ… Got It, Let's Start!", variant="primary", size="lg") with gr.Tabs() as tabs: # --- AI Assistant Tab (moved to first) --- with gr.TabItem("๐Ÿค– AI Assistant", id="chatbot_tab"): gr.Markdown("### ๐Ÿ’ฌ Intelligent Repository Discovery Assistant") gr.Markdown("๐ŸŽฏ **Tell me what you're building, and I'll automatically find the best repositories for you!**") chatbot = gr.Chatbot( label="๐Ÿค– AI Assistant", height=500, type="messages", avatar_images=( "https://cdn-icons-png.flaticon.com/512/149/149071.png", "https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png" ), show_copy_button=True ) with gr.Row(): msg_input = gr.Textbox( label="๐Ÿ’ญ Your Message", placeholder="Tell me about your project...", lines=1, scale=5, info="Describe what you're building and I'll find the perfect repositories" ) send_btn = gr.Button("๐Ÿ“ค", variant="primary", scale=1) with gr.Row(): extract_analyze_btn = gr.Button("๐ŸŽฏ Extract Keywords & Analyze Now", variant="secondary", size="lg") # Status and extracted info (auto-updated, no manual buttons needed) with gr.Row(): with gr.Column(): chat_status = gr.Textbox( label="๐ŸŽฏ Chat Status", interactive=False, lines=2, info="Conversation progress and auto-actions" ) with gr.Column(): extracted_keywords_output = gr.Textbox( label="๐Ÿท๏ธ Auto-Extracted Keywords", interactive=False, show_copy_button=True, info="Keywords automatically extracted and used for search" ) # --- Smart Search Tab (moved to second) --- with gr.TabItem("๐Ÿ“ Smart Search", id="input_tab"): gr.Markdown("### ๐Ÿ” Intelligent Repository Discovery") gr.Markdown("๐Ÿ’ก **Enter repository IDs (owner/repo) or keywords - I'll automatically detect which type and process accordingly!**") with gr.Row(): smart_input = gr.Textbox( label="Repository IDs or Keywords", lines=6, placeholder="Examples:\nโ€ข Repository IDs: microsoft/DialoGPT-medium, openai/whisper\nโ€ข Keywords: text generation, image classification, sentiment analysis", info="Smart detection: Use / for repo IDs, or enter keywords for search" ) with gr.Row(): auto_analyze_checkbox = gr.Checkbox( label="๐Ÿš€ Auto-analyze repositories", value=True, info="Automatically start analysis when repositories are found" ) smart_submit_btn = gr.Button("๐Ÿ” Find & Process Repositories", variant="primary", size="lg", scale=1) status_box_input = gr.Textbox(label="๐Ÿ“Š Status", interactive=False, lines=2) # --- Analysis & Results Tab (moved to third) --- with gr.TabItem("๐Ÿ”ฌ Analysis & Results", id="analysis_tab"): gr.Markdown("### ๐Ÿงช Repository Analysis Results") # Display current user requirements with gr.Row(): current_requirements_display = gr.Textbox( label="๐Ÿ“‹ Active Requirements Context", interactive=False, lines=2, info="Requirements from AI chat for better relevance scoring" ) # Manual analysis trigger (hidden by default, shown only when auto-analyze is off) with gr.Row(visible=False) as manual_analysis_row: analyze_all_btn = gr.Button("๐Ÿš€ Analyze All Repositories", variant="primary", size="lg") status_box_analysis = gr.Textbox(label="๐Ÿ“ˆ Analysis Status", interactive=False, lines=2) # Progress bar for batch analysis analysis_progress = gr.Progress() gr.Markdown("### ๐Ÿ“Š Results Dashboard") # Top 3 Most Relevant Repositories (initially hidden) with gr.Column(visible=False) as top_repos_section: gr.Markdown("### ๐Ÿ† Top 3 Most Relevant Repositories") gr.Markdown("๐ŸŽฏ **Click repository names to visit them directly on Hugging Face:**") top_repos_df = gr.Dataframe( headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"], column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"], wrap=True, interactive=False ) # Quick links for top repositories with gr.Row(): top_repo_links = gr.HTML( value="", label="๐Ÿ”— Quick Links", visible=False ) # Modal popup for repository action selection (positioned between the two CSV files) with gr.Row(): with gr.Column(): repo_action_modal = gr.Column(visible=False) with repo_action_modal: gr.Markdown("### ๐Ÿ”— Repository Actions") selected_repo_display = gr.Textbox( label="Selected Repository", interactive=False, info="Choose what you'd like to do with this repository" ) with gr.Row(): visit_repo_btn = gr.Button("๐ŸŒ Visit Hugging Face Space", variant="primary", size="lg") explore_repo_btn = gr.Button("๐Ÿ” Open in Repo Explorer", variant="secondary", size="lg") cancel_modal_btn = gr.Button("โŒ Cancel", size="lg") gr.Markdown("### ๐Ÿ“‹ All Analysis Results") gr.Markdown("๐Ÿ’ก **Click repository names to visit them on Hugging Face**") df_output = gr.Dataframe( headers=["Repository", "Strengths", "Weaknesses", "Speciality", "Relevance"], column_widths=["16.67%", "25%", "25%", "20.83%", "12.5%"], wrap=True, interactive=False ) # Quick links section for all repositories with gr.Row(): all_repo_links = gr.HTML( value="", label="๐Ÿ”— Repository Quick Links" ) # --- Repo Explorer Tab (moved to fourth) --- with gr.TabItem("๐Ÿ” Repo Explorer", id="repo_explorer_tab"): repo_components, repo_states = create_repo_explorer_tab() # --- Footer --- gr.Markdown( """

๐Ÿš€ Powered by Gradio & Hugging Face

""" ) # --- Event Handler Functions --- def handle_smart_input(text: str, auto_analyze: bool) -> Tuple[List[str], int, pd.DataFrame, str, Any, str]: """Smart input handler that detects if input is repo IDs or keywords and processes accordingly.""" if not text.strip(): return [], 0, pd.DataFrame(), "Status: Please enter repository IDs or keywords.", gr.update(selected="input_tab"), "" # Determine input type if is_repo_id_format(text): # Process as repository IDs repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()])) write_repos_to_csv(repo_ids) df = format_dataframe_for_display(read_csv_to_dataframe()) status = f"โœ… Found {len(repo_ids)} repository IDs. " if auto_analyze: status += "Starting automatic analysis..." return repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "auto_analyze" else: status += "Ready for manual analysis." return repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "" else: # Process as keywords keyword_list = [k.strip() for k in re.split(r'[\n,]+', text) if k.strip()] repo_ids = [] for kw in keyword_list: repo_ids.extend(search_top_spaces(kw, limit=5)) unique_repo_ids = list(dict.fromkeys(repo_ids)) write_repos_to_csv(unique_repo_ids) df = format_dataframe_for_display(read_csv_to_dataframe()) status = f"๐Ÿ” Found {len(unique_repo_ids)} repositories from keywords. " if auto_analyze: status += "Starting automatic analysis..." return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "auto_analyze" else: status += "Ready for manual analysis." return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab"), "" def handle_auto_analyze_toggle(auto_analyze: bool) -> Any: """Show/hide manual analysis controls based on auto-analyze setting.""" return gr.update(visible=not auto_analyze) def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]: """Appends the user's message to the history, preparing for the bot's response.""" # Initialize chatbot with welcome message if empty if not history: history = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}] if user_message: history.append({"role": "user", "content": user_message}) return history, "" def handle_bot_response(history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str, str, str, List[str], int, pd.DataFrame, Any]: """Generates bot response and automatically extracts keywords if conversation is ready.""" if not history or history[-1]["role"] != "user": return history, "", "", "", [], 0, pd.DataFrame(), gr.update() user_message = history[-1]["content"] # Convert all messages *before* the last user message into tuples for the API tuple_history_for_api = convert_messages_to_tuples(history[:-1]) response = chat_with_user(user_message, tuple_history_for_api) history.append({"role": "assistant", "content": response}) # Check if we should auto-extract keywords and search if should_auto_extract_keywords(history): # Auto-extract keywords tuple_history = convert_messages_to_tuples(history) raw_keywords_str = extract_keywords_from_conversation(tuple_history) # Sanitize keywords cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str) cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()] if cleaned_keywords: final_keywords_str = ", ".join(cleaned_keywords) # Extract user requirements user_requirements = extract_user_requirements_from_chat(history) # Auto-search repositories repo_ids = [] for kw in cleaned_keywords[:3]: # Use top 3 keywords to avoid too many results repo_ids.extend(search_top_spaces(kw, limit=5)) unique_repo_ids = list(dict.fromkeys(repo_ids)) write_repos_to_csv(unique_repo_ids) df = format_dataframe_for_display(read_csv_to_dataframe()) chat_status = f"๐ŸŽฏ Auto-extracted keywords and found {len(unique_repo_ids)} repositories. Analysis starting automatically..." return history, chat_status, final_keywords_str, user_requirements, unique_repo_ids, 0, df, gr.update(selected="analysis_tab") return history, "๐Ÿ’ฌ Conversation continuing...", "", "", [], 0, pd.DataFrame(), gr.update() def handle_dataframe_select(evt: gr.SelectData, df_data) -> Tuple[str, Any, str]: """Handle dataframe row selection - show modal for repo ID (column 0) clicks.""" print(f"DEBUG: Selection event triggered!") print(f"DEBUG: evt = {evt}") print(f"DEBUG: df_data type = {type(df_data)}") if evt is None: return "", gr.update(visible=False), "" try: # Get the selected row and column from the event row_idx = evt.index[0] col_idx = evt.index[1] print(f"DEBUG: Selected row {row_idx}, column {col_idx}") # Handle pandas DataFrame if isinstance(df_data, pd.DataFrame) and not df_data.empty and row_idx < len(df_data): if col_idx == 0: # Repository name column - show action modal repo_id = df_data.iloc[row_idx, 0] print(f"DEBUG: Extracted repo_id = '{repo_id}'") if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan': clean_repo_id = str(repo_id).strip() logger.info(f"Showing modal for repository: {clean_repo_id}") return clean_repo_id, gr.update(visible=True), clean_repo_id # For content columns (1,2,3) and relevance (4), do nothing since full text is shown directly else: print(f"DEBUG: Clicked on column {col_idx}, full text already shown in table") return "", gr.update(visible=False), "" else: print(f"DEBUG: df_data is not a DataFrame or row_idx {row_idx} out of range") except Exception as e: print(f"DEBUG: Exception occurred: {e}") logger.error(f"Error handling dataframe selection: {e}") return "", gr.update(visible=False), "" def handle_visit_repo(repo_id: str) -> Tuple[Any, str]: """Handle visiting the Hugging Face Space for the repository.""" if repo_id and repo_id.strip(): hf_url = f"https://huggingface.co/spaces/{repo_id.strip()}" logger.info(f"User chose to visit: {hf_url}") return gr.update(visible=False), hf_url return gr.update(visible=False), "" def handle_explore_repo(selected_repo_id: str) -> Tuple[Any, Any, Any, str, str]: """Handle navigating to the repo explorer and automatically load the repository.""" logger.info(f"DEBUG: handle_explore_repo called with selected_repo_id: '{selected_repo_id}'") if selected_repo_id and selected_repo_id.strip() and selected_repo_id.strip() != 'nan': clean_repo_id = selected_repo_id.strip() return ( gr.update(visible=False), # close modal gr.update(selected="repo_explorer_tab"), # switch tab gr.update(value=clean_repo_id), # populate repo explorer input clean_repo_id, # trigger repository loading with the repo ID "auto_load" # signal to auto-load the repository ) else: return ( gr.update(visible=False), # close modal gr.update(selected="repo_explorer_tab"), # switch tab gr.update(), # don't change repo explorer input "", # no repo ID to load "" # no auto-load signal ) def handle_cancel_modal() -> Any: """Handle closing the modal.""" return gr.update(visible=False) def generate_repo_links_html(df: pd.DataFrame) -> str: """Generate HTML with clickable links for repositories.""" if df.empty: return "" html_links = [] for idx, row in df.iterrows(): repo_id = row.get('repo id', '') if hasattr(row, 'get') else row[0] if repo_id and str(repo_id).strip() and str(repo_id).strip() != 'nan': clean_repo_id = str(repo_id).strip() hf_url = f"https://huggingface.co/spaces/{clean_repo_id}" html_links.append(f'{clean_repo_id}') if html_links: return f'
{"".join(html_links)}
' return "" def handle_extract_and_analyze(history: List[Dict[str, str]]) -> Tuple[str, str, str, List[str], int, pd.DataFrame, Any, pd.DataFrame, str, Any, str, str]: """Extract keywords from chat, search repositories, and immediately start analysis.""" if not history: return "โŒ No conversation to extract from.", "", "", [], 0, pd.DataFrame(), gr.update(), pd.DataFrame(), "", gr.update(visible=False), "", "" # Convert the full, valid history for the extraction logic tuple_history = convert_messages_to_tuples(history) if not tuple_history: return "โŒ No completed conversations to analyze.", "", "", [], 0, pd.DataFrame(), gr.update(), pd.DataFrame(), "", gr.update(visible=False), "", "" # Get raw keywords string from the LLM raw_keywords_str = extract_keywords_from_conversation(tuple_history) # Sanitize the LLM output to extract only keyword-like parts cleaned_keywords = re.findall(r'[\w\s-]+', raw_keywords_str) cleaned_keywords = [kw.strip() for kw in cleaned_keywords if kw.strip()] if not cleaned_keywords: return f"โŒ Could not extract valid keywords. Raw output: '{raw_keywords_str}'", "", "", [], 0, pd.DataFrame(), gr.update(), pd.DataFrame(), "", gr.update(visible=False), "", "" # Join them into a clean, comma-separated string final_keywords_str = ", ".join(cleaned_keywords) # Extract user requirements for analysis user_requirements = extract_user_requirements_from_chat(history) # Auto-search repositories repo_ids = [] for kw in cleaned_keywords[:3]: # Use top 3 keywords to avoid too many results repo_ids.extend(search_top_spaces(kw, limit=5)) unique_repo_ids = list(dict.fromkeys(repo_ids)) if not unique_repo_ids: return f"โŒ No repositories found for keywords: {final_keywords_str}", final_keywords_str, user_requirements, [], 0, pd.DataFrame(), gr.update(), pd.DataFrame(), "", gr.update(visible=False), "", "" write_repos_to_csv(unique_repo_ids) df = format_dataframe_for_display(read_csv_to_dataframe()) # Immediately start analysis try: analyzed_df, analysis_status, top_repos, top_section_update, all_links, top_links = handle_analyze_all_repos(unique_repo_ids, user_requirements) chat_status = f"๐ŸŽ‰ Extracted keywords โ†’ Found {len(unique_repo_ids)} repositories โ†’ Analysis complete!" return chat_status, final_keywords_str, user_requirements, unique_repo_ids, 0, analyzed_df, gr.update(selected="analysis_tab"), top_repos, analysis_status, top_section_update, all_links, top_links except Exception as e: logger.error(f"Error during extract and analyze: {e}") error_status = f"โœ… Found {len(unique_repo_ids)} repositories, but analysis failed: {e}" return error_status, final_keywords_str, user_requirements, unique_repo_ids, 0, df, gr.update(selected="analysis_tab"), pd.DataFrame(), "", gr.update(visible=False), "", "" def extract_user_requirements_from_chat(history: List[Dict[str, str]]) -> str: """Extract user requirements from chatbot conversation.""" if not history: return "" user_messages = [] for msg in history: if msg.get('role') == 'user': user_messages.append(msg.get('content', '')) if not user_messages: return "" # Combine all user messages as requirements requirements = "\n".join([f"- {msg}" for msg in user_messages if msg.strip()]) return requirements def handle_analyze_all_repos(repo_ids: List[str], user_requirements: str, progress=gr.Progress()) -> Tuple[pd.DataFrame, str, pd.DataFrame, Any, str, str]: """Analyzes all repositories in the CSV file with progress tracking.""" if not repo_ids: return pd.DataFrame(), "Status: No repositories to analyze. Please submit repo IDs first.", pd.DataFrame(), gr.update(visible=False), "", "" total_repos = len(repo_ids) try: # Start the progress tracking progress(0, desc="Initializing batch analysis...") successful_analyses = 0 failed_analyses = 0 csv_update_failures = 0 for i, repo_id in enumerate(repo_ids): # Update progress progress_percent = (i / total_repos) progress(progress_percent, desc=f"Analyzing {repo_id} ({i+1}/{total_repos})") try: logger.info(f"Batch analysis: Processing {repo_id} ({i+1}/{total_repos})") # Analyze the repository content, summary, df = analyze_and_update_single_repo(repo_id, user_requirements) # Verify the CSV was actually updated by checking if the repo has analysis data updated_df = read_csv_to_dataframe() repo_updated = False for idx, row in updated_df.iterrows(): if row["repo id"] == repo_id: # Check if any analysis field is populated if (row.get("strength", "").strip() or row.get("weaknesses", "").strip() or row.get("speciality", "").strip() or row.get("relevance rating", "").strip()): repo_updated = True break if repo_updated: successful_analyses += 1 else: # CSV update failed - try once more logger.warning(f"CSV update failed for {repo_id}, attempting retry...") time.sleep(0.5) # Wait a bit longer # Force re-read and re-update df_retry = read_csv_to_dataframe() retry_success = False # Re-parse the analysis if available if summary and "JSON extraction: SUCCESS" in summary: # Extract the analysis from summary - this is a fallback logger.info(f"Attempting to re-update CSV for {repo_id}") content_retry, summary_retry, df_retry = analyze_and_update_single_repo(repo_id, user_requirements) # Check again final_df = read_csv_to_dataframe() for idx, row in final_df.iterrows(): if row["repo id"] == repo_id: if (row.get("strength", "").strip() or row.get("weaknesses", "").strip() or row.get("speciality", "").strip() or row.get("relevance rating", "").strip()): retry_success = True break if retry_success: successful_analyses += 1 else: csv_update_failures += 1 # Longer delay to prevent file conflicts time.sleep(0.3) except Exception as e: logger.error(f"Error analyzing {repo_id}: {e}") failed_analyses += 1 # Still wait to prevent rapid failures time.sleep(0.2) # Complete the progress progress(1.0, desc="Batch analysis completed!") # Get final updated dataframe updated_df = read_csv_to_dataframe() # Filter out rows with no analysis data for consistent display with top 3 analyzed_df = updated_df.copy() analyzed_df = analyzed_df[ (analyzed_df['strength'].str.strip() != '') | (analyzed_df['weaknesses'].str.strip() != '') | (analyzed_df['speciality'].str.strip() != '') | (analyzed_df['relevance rating'].str.strip() != '') ] # Get top 3 most relevant repositories using full data top_repos = get_top_relevant_repos(updated_df, user_requirements, top_n=3) # Generate HTML links for repositories all_links_html = generate_repo_links_html(analyzed_df) top_links_html = generate_repo_links_html(top_repos) if not top_repos.empty else "" # Final status with detailed breakdown final_status = f"๐ŸŽ‰ Batch Analysis Complete!\nโœ… Successful: {successful_analyses}/{total_repos}\nโŒ Failed: {failed_analyses}/{total_repos}" if csv_update_failures > 0: final_status += f"\nโš ๏ธ CSV Update Issues: {csv_update_failures}/{total_repos}" # Add top repos info if available if not top_repos.empty: final_status += f"\n\n๐Ÿ† Top {len(top_repos)} most relevant repositories selected!" # Show top repos section if we have results show_top_section = gr.update(visible=not top_repos.empty) logger.info(f"Batch analysis completed: {successful_analyses} successful, {failed_analyses} failed, {csv_update_failures} CSV update issues") return format_dataframe_for_display(analyzed_df), final_status, format_dataframe_for_display(top_repos), show_top_section, all_links_html, top_links_html except Exception as e: logger.error(f"Error in batch analysis: {e}") error_status = f"โŒ Batch analysis failed: {e}" return format_dataframe_for_display(read_csv_to_dataframe()), error_status, pd.DataFrame(), gr.update(visible=False), "", "" def handle_reset_everything() -> Tuple[List[str], int, str, pd.DataFrame, pd.DataFrame, Any, List[Dict[str, str]], str, str, str]: """Reset everything to initial state - clear all data, CSV, and UI components.""" try: # Clear the CSV file if os.path.exists(CSV_FILE): os.remove(CSV_FILE) logger.info("CSV file deleted for reset") # Create empty dataframe empty_df = pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"]) # Reset state variables repo_ids_reset = [] current_idx_reset = 0 user_requirements_reset = "" # Reset status status_reset = "Status: Everything has been reset. Ready to start fresh!" # Reset UI components current_requirements_reset = "No requirements extracted yet." extracted_keywords_reset = "" # Reset chatbot to initial message chatbot_reset = [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}] logger.info("Complete system reset performed") return ( repo_ids_reset, # repo_ids_state current_idx_reset, # current_repo_idx_state user_requirements_reset, # user_requirements_state empty_df, # df_output empty_df, # top_repos_df gr.update(visible=False), # top_repos_section chatbot_reset, # chatbot status_reset, # status_box_input current_requirements_reset, # current_requirements_display extracted_keywords_reset # extracted_keywords_output ) except Exception as e: logger.error(f"Error during reset: {e}") error_status = f"Reset failed: {e}" return ( [], # repo_ids_state 0, # current_repo_idx_state "", # user_requirements_state pd.DataFrame(), # df_output pd.DataFrame(), # top_repos_df gr.update(visible=False), # top_repos_section [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], # chatbot error_status, # status_box_input "No requirements extracted yet.", # current_requirements_display "" # extracted_keywords_output ) # --- Component Event Wiring --- # Initialize chatbot with welcome message on app load app.load( fn=lambda: [{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}], outputs=[chatbot] ) # Smart Input with Auto-processing smart_input.submit( fn=handle_smart_input, inputs=[smart_input, auto_analyze_checkbox], outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_input, tabs, status_box_input] ).then( # If auto_analyze is enabled and we got repos, start analysis automatically fn=lambda repo_ids, user_reqs, trigger: handle_analyze_all_repos(repo_ids, user_reqs) if trigger == "auto_analyze" and repo_ids else (pd.DataFrame(), "Ready for analysis.", pd.DataFrame(), gr.update(visible=False), "", ""), inputs=[repo_ids_state, user_requirements_state, status_box_input], outputs=[df_output, status_box_input, top_repos_df, top_repos_section, all_repo_links, top_repo_links] ) # Smart Submit Button (same behavior as enter) smart_submit_btn.click( fn=handle_smart_input, inputs=[smart_input, auto_analyze_checkbox], outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_input, tabs, status_box_input] ).then( # If auto_analyze is enabled and we got repos, start analysis automatically fn=lambda repo_ids, user_reqs, trigger: handle_analyze_all_repos(repo_ids, user_reqs) if trigger == "auto_analyze" and repo_ids else (pd.DataFrame(), "Ready for analysis.", pd.DataFrame(), gr.update(visible=False), "", ""), inputs=[repo_ids_state, user_requirements_state, status_box_input], outputs=[df_output, status_box_input, top_repos_df, top_repos_section, all_repo_links, top_repo_links] ) # Auto-analyze checkbox toggle auto_analyze_checkbox.change( fn=handle_auto_analyze_toggle, inputs=[auto_analyze_checkbox], outputs=[manual_analysis_row] ) # Manual analysis button (when auto-analyze is disabled) analyze_all_btn.click( fn=handle_analyze_all_repos, inputs=[repo_ids_state, user_requirements_state], outputs=[df_output, status_box_analysis, top_repos_df, top_repos_section, all_repo_links, top_repo_links] ) # Chatbot with Auto-extraction and Auto-search msg_input.submit( fn=handle_user_message, inputs=[msg_input, chatbot], outputs=[chatbot, msg_input] ).then( fn=handle_bot_response, inputs=[chatbot], outputs=[chatbot, chat_status, extracted_keywords_output, user_requirements_state, repo_ids_state, current_repo_idx_state, df_output, tabs] ).then( # Update requirements display when they change fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.", inputs=[user_requirements_state], outputs=[current_requirements_display] ).then( # If we got repos from chatbot, auto-analyze them fn=lambda repo_ids, user_reqs: handle_analyze_all_repos(repo_ids, user_reqs) if repo_ids else (pd.DataFrame(), "", pd.DataFrame(), gr.update(visible=False), "", ""), inputs=[repo_ids_state, user_requirements_state], outputs=[df_output, chat_status, top_repos_df, top_repos_section, all_repo_links, top_repo_links] ) send_btn.click( fn=handle_user_message, inputs=[msg_input, chatbot], outputs=[chatbot, msg_input] ).then( fn=handle_bot_response, inputs=[chatbot], outputs=[chatbot, chat_status, extracted_keywords_output, user_requirements_state, repo_ids_state, current_repo_idx_state, df_output, tabs] ).then( # Update requirements display when they change fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.", inputs=[user_requirements_state], outputs=[current_requirements_display] ).then( # If we got repos from chatbot, auto-analyze them fn=lambda repo_ids, user_reqs: handle_analyze_all_repos(repo_ids, user_reqs) if repo_ids else (pd.DataFrame(), "", pd.DataFrame(), gr.update(visible=False), "", ""), inputs=[repo_ids_state, user_requirements_state], outputs=[df_output, chat_status, top_repos_df, top_repos_section, all_repo_links, top_repo_links] ) # Extract and Analyze Button (one-click solution for chatbot) extract_analyze_btn.click( fn=handle_extract_and_analyze, inputs=[chatbot], outputs=[chat_status, extracted_keywords_output, user_requirements_state, repo_ids_state, current_repo_idx_state, df_output, tabs, top_repos_df, status_box_analysis, top_repos_section, all_repo_links, top_repo_links] ).then( # Update requirements display when they change fn=lambda req: req if req.strip() else "No specific requirements extracted from conversation.", inputs=[user_requirements_state], outputs=[current_requirements_display] ) # Repo Explorer Tab setup_repo_explorer_events(repo_components, repo_states) # Direct Repository Clicks - Show Modal (like old_app2.py) df_output.select( fn=handle_dataframe_select, inputs=[df_output], outputs=[selected_repo_display, repo_action_modal, selected_repo_id_state] ) top_repos_df.select( fn=handle_dataframe_select, inputs=[top_repos_df], outputs=[selected_repo_display, repo_action_modal, selected_repo_id_state] ) # Modal button events (like old_app2.py) visit_repo_btn.click( fn=handle_visit_repo, inputs=[selected_repo_display], outputs=[repo_action_modal, selected_repo_display], js="(repo_id) => { if(repo_id && repo_id.trim()) { window.open('https://huggingface.co/spaces/' + repo_id.trim(), '_blank'); } }" ) explore_repo_btn.click( fn=handle_explore_repo, inputs=[selected_repo_id_state], outputs=[ repo_action_modal, tabs, repo_components["repo_explorer_input"], repo_states["current_repo_id"], # Set the current repo ID status_box_input # Use for auto-load signal ], js="""(repo_id) => { console.log('DEBUG: Navigate to repo explorer for:', repo_id); setTimeout(() => { window.scrollTo({top: 0, behavior: 'smooth'}); }, 200); }""" ).then( # Auto-load the repository if the signal indicates to do so fn=lambda repo_id, signal: handle_load_repository(repo_id) if signal == "auto_load" and repo_id else ("", ""), inputs=[repo_states["current_repo_id"], status_box_input], outputs=[repo_components["repo_status_display"], repo_states["repo_context_summary"]] ).then( # Initialize the chatbot with welcome message after auto-loading fn=lambda repo_status, repo_id, repo_context, signal: ( initialize_repo_chatbot(repo_status, repo_id, repo_context) if signal == "auto_load" and repo_id else [] ), inputs=[repo_components["repo_status_display"], repo_states["current_repo_id"], repo_states["repo_context_summary"], status_box_input], outputs=[repo_components["repo_chatbot"]] ) cancel_modal_btn.click( fn=handle_cancel_modal, outputs=[repo_action_modal] ) # Reset button event reset_all_btn.click( fn=handle_reset_everything, outputs=[repo_ids_state, current_repo_idx_state, user_requirements_state, df_output, top_repos_df, top_repos_section, chatbot, status_box_input, current_requirements_display, extracted_keywords_output] ) # Help modal events help_btn.click( fn=lambda: gr.update(visible=True), outputs=[help_modal] ) close_help_btn.click( fn=lambda: gr.update(visible=False), outputs=[help_modal] ) return app if __name__ == "__main__": app = create_ui() app.launch(debug=True)