import gradio as gr import os # from analyzer import analyze_code # System prompt for the chatbot CHATBOT_SYSTEM_PROMPT = ( "You are a helpful assistant. Your goal is to help the user describe their ideal Hugging face repo. " "Ask questions to clarify what they want, their use case, preferred language, features, etc. " "When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. " "Return only the keywords as a comma-separated list." ) # Store the conversation conversation_history = [] # Function to handle chat def chat_with_user(user_message, history): from openai import OpenAI client = OpenAI(api_key=os.getenv("modal_api")) client.base_url = os.getenv("base_url") # Build the message list for the LLM messages = [ {"role": "system", "content": CHATBOT_SYSTEM_PROMPT} ] for msg in history: messages.append({"role": "user", "content": msg[0]}) if msg[1]: messages.append({"role": "assistant", "content": msg[1]}) messages.append({"role": "user", "content": user_message}) response = client.chat.completions.create( model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", messages=messages, max_tokens=256, temperature=0.7 ) assistant_reply = response.choices[0].message.content return assistant_reply # Function to end chat and extract keywords def extract_keywords_from_conversation(history): print("Extracting keywords from conversation...") from openai import OpenAI client = OpenAI(api_key=os.getenv("modal_api")) client.base_url = os.getenv("base_url") # Combine all user and assistant messages into a single string conversation = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history if msg[1]]) system_prompt = ( "You are an expert at helping users find open-source repos on Hugging Face. " "Given a conversation, extract about 5 keywords that would be most useful for searching Hugging Face repos to find the most relevant results for the user. " "Return only the keywords as a comma-separated list." ) user_prompt = ( "Conversation:\n" + conversation + "\n\nExtract about 5 keywords for Hugging Face repo search." ) response = client.chat.completions.create( model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ], max_tokens=64, temperature=0.3 ) print("Response received from OpenAI...") print(response.choices[0].message.content) keywords = response.choices[0].message.content.strip() return keywords with gr.Blocks() as chatbot_demo: gr.Markdown("## Repo Recommendation Chatbot") chatbot = gr.Chatbot() # Initial assistant message initial_message = "Hello! What kind of open-source repo are you looking for? Please describe your ideal repo, use case, preferred language, or any features you want." state = gr.State([["", initial_message]]) # Start with assistant message user_input = gr.Textbox(label="Your message", placeholder="Describe your ideal repo or answer the assistant's questions...") send_btn = gr.Button("Send") end_btn = gr.Button("End Chat and Extract Keywords") keywords_output = gr.Textbox(label="Extracted Keywords for Repo Search", interactive=False) def user_send(user_message, history): assistant_reply = chat_with_user(user_message, history) history = history + [[user_message, assistant_reply]] return history, history, "" def end_chat(history): keywords = extract_keywords_from_conversation(history) return keywords send_btn.click(user_send, inputs=[user_input, state], outputs=[chatbot, state, user_input]) end_btn.click(end_chat, inputs=state, outputs=keywords_output) if __name__ == "__main__": chatbot_demo.launch()