Update app.py
Browse filesadd read me link
app.py
CHANGED
@@ -34,616 +34,4 @@ class HuggingFaceInfoServer:
|
|
34 |
def _is_cache_valid(self, cache_key: str) -> bool:
|
35 |
if cache_key not in self.cache:
|
36 |
return False
|
37 |
-
cache_time = self.cache[cache_key].get('timestamp', 0)
|
38 |
-
return time.time() - cache_time < self.cache_ttl
|
39 |
-
|
40 |
-
def _get_from_cache(self, cache_key: str) -> Optional[str]:
|
41 |
-
if self._is_cache_valid(cache_key):
|
42 |
-
return self.cache[cache_key]['content']
|
43 |
-
return None
|
44 |
-
|
45 |
-
def _store_in_cache(self, cache_key: str, content: str):
|
46 |
-
self.cache[cache_key] = {
|
47 |
-
'content': content,
|
48 |
-
'timestamp': time.time()
|
49 |
-
}
|
50 |
-
|
51 |
-
def _fetch_with_retry(self, url: str, max_retries: int = 3) -> Optional[str]:
|
52 |
-
cache_key = f"url_{hash(url)}"
|
53 |
-
cached_content = self._get_from_cache(cache_key)
|
54 |
-
if cached_content:
|
55 |
-
logger.info(f"Cache hit for {url}")
|
56 |
-
return cached_content
|
57 |
-
for attempt in range(max_retries):
|
58 |
-
try:
|
59 |
-
logger.info(f"Fetching {url} (attempt {attempt + 1})")
|
60 |
-
response = self.session.get(url, timeout=20)
|
61 |
-
response.raise_for_status()
|
62 |
-
content = response.text
|
63 |
-
self._store_in_cache(cache_key, content)
|
64 |
-
return content
|
65 |
-
except requests.exceptions.RequestException as e:
|
66 |
-
logger.warning(f"Attempt {attempt + 1} failed for {url}: {e}")
|
67 |
-
if attempt < max_retries - 1:
|
68 |
-
time.sleep(2 ** attempt)
|
69 |
-
else:
|
70 |
-
logger.error(f"All attempts failed for {url}")
|
71 |
-
return None
|
72 |
-
return None
|
73 |
-
|
74 |
-
def _extract_code_examples(self, soup: BeautifulSoup) -> List[Dict[str, str]]:
|
75 |
-
code_blocks = []
|
76 |
-
code_elements = soup.find_all(['code', 'pre'])
|
77 |
-
for code_elem in code_elements:
|
78 |
-
lang_class = code_elem.get('class', [])
|
79 |
-
language = 'python'
|
80 |
-
for cls in lang_class:
|
81 |
-
if 'language-' in str(cls):
|
82 |
-
language = str(cls).replace('language-', '')
|
83 |
-
break
|
84 |
-
elif any(lang in str(cls).lower() for lang in ['python', 'bash', 'javascript', 'json']):
|
85 |
-
language = str(cls).lower()
|
86 |
-
break
|
87 |
-
code_text = code_elem.get_text(strip=True)
|
88 |
-
if len(code_text) > 20 and any(keyword in code_text.lower() for keyword in ['import', 'from', 'def', 'class', 'pip install', 'transformers']):
|
89 |
-
code_blocks.append({'code': code_text, 'language': language, 'type': 'usage' if any(word in code_text.lower() for word in ['import', 'load', 'pipeline']) else 'example'})
|
90 |
-
highlight_blocks = soup.find_all('div', class_=re.compile(r'highlight|code-block|language'))
|
91 |
-
for block in highlight_blocks:
|
92 |
-
code_text = block.get_text(strip=True)
|
93 |
-
if len(code_text) > 20:
|
94 |
-
code_blocks.append({'code': code_text, 'language': 'python', 'type': 'example'})
|
95 |
-
seen = set()
|
96 |
-
unique_blocks = []
|
97 |
-
for block in code_blocks:
|
98 |
-
code_hash = hash(block['code'][:100])
|
99 |
-
if code_hash not in seen:
|
100 |
-
seen.add(code_hash)
|
101 |
-
unique_blocks.append(block)
|
102 |
-
if len(unique_blocks) >= 5:
|
103 |
-
break
|
104 |
-
return unique_blocks
|
105 |
-
|
106 |
-
def _extract_practical_content(self, soup: BeautifulSoup, topic: str) -> Dict[str, Any]:
|
107 |
-
content = {'overview': '', 'code_examples': [], 'usage_instructions': [], 'parameters': [], 'methods': [], 'installation': '', 'quickstart': ''}
|
108 |
-
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|docs|prose'))
|
109 |
-
if not main_content:
|
110 |
-
return content
|
111 |
-
overview_sections = main_content.find_all('p', limit=5)
|
112 |
-
overview_texts = []
|
113 |
-
for p in overview_sections:
|
114 |
-
text = p.get_text(strip=True)
|
115 |
-
if len(text) > 30 and not text.startswith('Table of contents'):
|
116 |
-
overview_texts.append(text)
|
117 |
-
if overview_texts:
|
118 |
-
overview = ' '.join(overview_texts)
|
119 |
-
content['overview'] = overview[:1000] + "..." if len(overview) > 1000 else overview
|
120 |
-
content['code_examples'] = self._extract_code_examples(main_content)
|
121 |
-
install_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4'], string=re.compile(r'install|setup|getting started', re.IGNORECASE))
|
122 |
-
for heading in install_headings:
|
123 |
-
next_elem = heading.find_next_sibling()
|
124 |
-
install_text = []
|
125 |
-
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4'] and len(install_text) < 3:
|
126 |
-
if next_elem.name in ['p', 'pre', 'code']:
|
127 |
-
text = next_elem.get_text(strip=True)
|
128 |
-
if text and len(text) > 10:
|
129 |
-
install_text.append(text)
|
130 |
-
next_elem = next_elem.find_next_sibling()
|
131 |
-
if install_text:
|
132 |
-
content['installation'] = ' '.join(install_text)
|
133 |
-
break
|
134 |
-
usage_headings = main_content.find_all(['h1', 'h2', 'h3', 'h4'])
|
135 |
-
for heading in usage_headings:
|
136 |
-
heading_text = heading.get_text(strip=True).lower()
|
137 |
-
if any(keyword in heading_text for keyword in ['usage', 'example', 'how to', 'quickstart', 'getting started']):
|
138 |
-
next_elem = heading.find_next_sibling()
|
139 |
-
instruction_parts = []
|
140 |
-
while next_elem and next_elem.name not in ['h1', 'h2', 'h3', 'h4']:
|
141 |
-
if next_elem.name in ['p', 'li', 'div', 'ol', 'ul']:
|
142 |
-
text = next_elem.get_text(strip=True)
|
143 |
-
if text and len(text) > 15:
|
144 |
-
instruction_parts.append(text)
|
145 |
-
next_elem = next_elem.find_next_sibling()
|
146 |
-
if len(instruction_parts) >= 5:
|
147 |
-
break
|
148 |
-
if instruction_parts:
|
149 |
-
content['usage_instructions'].extend(instruction_parts)
|
150 |
-
tables = main_content.find_all('table')
|
151 |
-
for table in tables:
|
152 |
-
headers = [th.get_text(strip=True).lower() for th in table.find_all('th')]
|
153 |
-
if any(keyword in ' '.join(headers) for keyword in ['parameter', 'argument', 'option', 'attribute', 'name', 'type']):
|
154 |
-
rows = table.find_all('tr')[1:]
|
155 |
-
for row in rows[:8]:
|
156 |
-
cells = [td.get_text(strip=True) for td in row.find_all('td')]
|
157 |
-
if len(cells) >= 2:
|
158 |
-
param_info = {'name': cells[0], 'description': cells[1] if len(cells) > 1 else '', 'type': cells[2] if len(cells) > 2 else '', 'default': cells[3] if len(cells) > 3 else ''}
|
159 |
-
content['parameters'].append(param_info)
|
160 |
-
return content
|
161 |
-
|
162 |
-
def search_documentation(self, query: str, max_results: int = 3) -> str:
|
163 |
-
"""
|
164 |
-
Searches the official Hugging Face documentation for a specific topic and returns a summary.
|
165 |
-
This tool is useful for finding how-to guides, explanations of concepts like 'pipeline' or 'tokenizer', and usage examples.
|
166 |
-
|
167 |
-
Args:
|
168 |
-
query (str): The topic or keyword to search for in the documentation (e.g., 'fine-tuning', 'peft', 'datasets').
|
169 |
-
max_results (int): The maximum number of documentation pages to retrieve and summarize. Defaults to 3.
|
170 |
-
"""
|
171 |
-
# ... (implementation from previous turn remains the same)
|
172 |
-
try:
|
173 |
-
max_results = int(max_results) if isinstance(max_results, str) else max_results
|
174 |
-
max_results = min(max_results, 5)
|
175 |
-
query_lower = query.lower().strip()
|
176 |
-
if not query_lower:
|
177 |
-
return "Please provide a search query."
|
178 |
-
doc_sections = {
|
179 |
-
'transformers': {'base_url': 'https://huggingface.co/docs/transformers', 'topics': {'pipeline': '/main_classes/pipelines', 'tokenizer': '/main_classes/tokenizer', 'trainer': '/main_classes/trainer', 'model': '/main_classes/model', 'quicktour': '/quicktour', 'installation': '/installation', 'fine-tuning': '/training', 'training': '/training', 'inference': '/main_classes/pipelines', 'preprocessing': '/preprocessing', 'tutorial': '/tutorials', 'configuration': '/main_classes/configuration', 'peft': '/peft', 'lora': '/peft', 'quantization': '/main_classes/quantization', 'generation': '/main_classes/text_generation', 'optimization': '/perf_train_gpu_one', 'deployment': '/deployment', 'custom': '/custom_models'}},
|
180 |
-
'datasets': {'base_url': 'https://huggingface.co/docs/datasets', 'topics': {'loading': '/load_hub', 'load': '/load_hub', 'processing': '/process', 'streaming': '/stream', 'audio': '/audio_process', 'image': '/image_process', 'text': '/nlp_process', 'arrow': '/about_arrow', 'cache': '/cache', 'upload': '/upload_dataset', 'custom': '/dataset_script'}},
|
181 |
-
'diffusers': {'base_url': 'https://huggingface.co/docs/diffusers', 'topics': {'pipeline': '/using-diffusers/loading', 'stable diffusion': '/using-diffusers/stable_diffusion', 'controlnet': '/using-diffusers/controlnet', 'inpainting': '/using-diffusers/inpaint', 'training': '/training/overview', 'optimization': '/optimization/fp16', 'schedulers': '/using-diffusers/schedulers'}},
|
182 |
-
'hub': {'base_url': 'https://huggingface.co/docs/hub', 'topics': {'repositories': '/repositories', 'git': '/repositories-getting-started', 'spaces': '/spaces', 'models': '/models', 'datasets': '/datasets'}}
|
183 |
-
}
|
184 |
-
relevant_urls = []
|
185 |
-
for section_name, section_data in doc_sections.items():
|
186 |
-
base_url = section_data['base_url']
|
187 |
-
topics = section_data['topics']
|
188 |
-
for topic, path in topics.items():
|
189 |
-
relevance = 0
|
190 |
-
if query_lower == topic.lower(): relevance = 1.0
|
191 |
-
elif query_lower in topic.lower(): relevance = 0.9
|
192 |
-
elif any(word in topic.lower() for word in query_lower.split()): relevance = 0.7
|
193 |
-
elif any(word in query_lower for word in topic.lower().split()): relevance = 0.6
|
194 |
-
if relevance > 0:
|
195 |
-
full_url = base_url + path
|
196 |
-
relevant_urls.append({'url': full_url, 'topic': topic, 'section': section_name, 'relevance': relevance})
|
197 |
-
relevant_urls.sort(key=lambda x: x['relevance'], reverse=True)
|
198 |
-
relevant_urls = relevant_urls[:max_results]
|
199 |
-
if not relevant_urls:
|
200 |
-
return f"❌ No documentation found for '{query}'. Try: pipeline, tokenizer, trainer, model, fine-tuning, datasets, diffusers, or peft."
|
201 |
-
result = f"# 📚 Hugging Face Documentation: {query}\n\n"
|
202 |
-
for i, url_info in enumerate(relevant_urls, 1):
|
203 |
-
section_emoji = {'transformers': '🤖', 'datasets': '📊', 'diffusers': '🎨', 'hub': '🌐'}.get(url_info['section'], '📄')
|
204 |
-
result += f"## {i}. {section_emoji} {url_info['topic'].title()} ({url_info['section'].title()})\n\n"
|
205 |
-
content = self._fetch_with_retry(url_info['url'])
|
206 |
-
if content:
|
207 |
-
soup = BeautifulSoup(content, 'html.parser')
|
208 |
-
practical_content = self._extract_practical_content(soup, url_info['topic'])
|
209 |
-
if practical_content['overview']: result += f"**📖 Overview:**\n{practical_content['overview']}\n\n"
|
210 |
-
if practical_content['installation']: result += f"**⚙️ Installation:**\n{practical_content['installation']}\n\n"
|
211 |
-
if practical_content['code_examples']:
|
212 |
-
result += "**💻 Code Examples:**\n\n"
|
213 |
-
for j, code_block in enumerate(practical_content['code_examples'][:3], 1):
|
214 |
-
lang = code_block.get('language', 'python')
|
215 |
-
code_type = code_block.get('type', 'example')
|
216 |
-
result += f"*{code_type.title()} {j}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
217 |
-
if practical_content['usage_instructions']:
|
218 |
-
result += "**🛠️ Usage Instructions:**\n"
|
219 |
-
for idx, instruction in enumerate(practical_content['usage_instructions'][:4], 1):
|
220 |
-
result += f"{idx}. {instruction}\n"
|
221 |
-
result += "\n"
|
222 |
-
if practical_content['parameters']:
|
223 |
-
result += "**⚙️ Parameters:**\n"
|
224 |
-
for param in practical_content['parameters'][:6]:
|
225 |
-
param_type = f" (`{param['type']}`)" if param.get('type') else ""
|
226 |
-
default_val = f" *Default: {param['default']}*" if param.get('default') else ""
|
227 |
-
result += f"• **{param['name']}**{param_type}: {param['description']}{default_val}\n"
|
228 |
-
result += "\n"
|
229 |
-
result += f"**🔗 Full Documentation:** {url_info['url']}\n\n"
|
230 |
-
else:
|
231 |
-
result += f"⚠️ Could not fetch content. Visit directly: {url_info['url']}\n\n"
|
232 |
-
result += "---\n\n"
|
233 |
-
return result
|
234 |
-
except Exception as e:
|
235 |
-
logger.error(f"Error in search_documentation: {e}")
|
236 |
-
return f"❌ Error searching documentation: {str(e)}\n\nTry a simpler search term or check your internet connection."
|
237 |
-
|
238 |
-
|
239 |
-
def get_model_info(self, model_name: str) -> str:
|
240 |
-
"""
|
241 |
-
Fetches comprehensive information about a specific model from the Hugging Face Hub.
|
242 |
-
Provides statistics like downloads and likes, a description, usage examples, and a quick-start code snippet.
|
243 |
-
|
244 |
-
Args:
|
245 |
-
model_name (str): The full identifier of the model on the Hub, such as 'bert-base-uncased' or 'meta-llama/Llama-2-7b-hf'.
|
246 |
-
"""
|
247 |
-
# ... (implementation from previous turn remains the same)
|
248 |
-
try:
|
249 |
-
model_name = model_name.strip()
|
250 |
-
if not model_name: return "Please provide a model name."
|
251 |
-
api_url = f"{self.api_url}/models/{model_name}"
|
252 |
-
response = self.session.get(api_url, timeout=15)
|
253 |
-
if response.status_code == 404: return f"❌ Model '{model_name}' not found. Please check the model name."
|
254 |
-
elif response.status_code != 200: return f"❌ Error fetching model info (Status: {response.status_code})"
|
255 |
-
model_data = response.json()
|
256 |
-
result = f"# 🤖 Model: {model_name}\n\n"
|
257 |
-
downloads = model_data.get('downloads', 0)
|
258 |
-
likes = model_data.get('likes', 0)
|
259 |
-
task = model_data.get('pipeline_tag', 'N/A')
|
260 |
-
library = model_data.get('library_name', 'N/A')
|
261 |
-
result += f"**📊 Statistics:**\n• **Downloads:** {downloads:,}\n• **Likes:** {likes:,}\n• **Task:** {task}\n• **Library:** {library}\n• **Created:** {model_data.get('createdAt', 'N/A')[:10]}\n• **Updated:** {model_data.get('lastModified', 'N/A')[:10]}\n\n"
|
262 |
-
if 'tags' in model_data and model_data['tags']: result += f"**🏷️ Tags:** {', '.join(model_data['tags'][:10])}\n\n"
|
263 |
-
model_url = f"{self.base_url}/{model_name}"
|
264 |
-
page_content = self._fetch_with_retry(model_url)
|
265 |
-
if page_content:
|
266 |
-
soup = BeautifulSoup(page_content, 'html.parser')
|
267 |
-
readme_content = soup.find('div', class_=re.compile(r'prose|readme|model-card'))
|
268 |
-
if readme_content:
|
269 |
-
paragraphs = readme_content.find_all('p')[:3]
|
270 |
-
description_parts = []
|
271 |
-
for p in paragraphs:
|
272 |
-
text = p.get_text(strip=True)
|
273 |
-
if len(text) > 30 and not any(skip in text.lower() for skip in ['table of contents', 'toc']):
|
274 |
-
description_parts.append(text)
|
275 |
-
if description_parts:
|
276 |
-
description = ' '.join(description_parts)
|
277 |
-
result += f"**📝 Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n"
|
278 |
-
code_examples = self._extract_code_examples(soup)
|
279 |
-
if code_examples:
|
280 |
-
result += "**💻 Usage Examples:**\n\n"
|
281 |
-
for i, code_block in enumerate(code_examples[:3], 1):
|
282 |
-
lang = code_block.get('language', 'python')
|
283 |
-
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
284 |
-
if task and task != 'N/A':
|
285 |
-
result += f"**🚀 Quick Start Template:**\n"
|
286 |
-
if library == 'transformers':
|
287 |
-
result += f"```python\nfrom transformers import pipeline\n\n# Load the model\nmodel = pipeline('{task}', model='{model_name}')\n\n# Use the model\n# result = model(your_input_here)\nprint(result)\n```\n\n"
|
288 |
-
else:
|
289 |
-
result += f"```python\n# Load and use {model_name}\n# Refer to the documentation for specific usage\n```\n\n"
|
290 |
-
if 'siblings' in model_data:
|
291 |
-
files = [f['rfilename'] for f in model_data['siblings'][:10]]
|
292 |
-
if files:
|
293 |
-
result += f"**📁 Model Files:** {', '.join(files)}\n\n"
|
294 |
-
result += f"**🔗 Model Page:** {model_url}\n"
|
295 |
-
return result
|
296 |
-
except requests.exceptions.RequestException as e: return f"❌ Network error: {str(e)}"
|
297 |
-
except Exception as e:
|
298 |
-
logger.error(f"Error in get_model_info: {e}")
|
299 |
-
return f"❌ Error fetching model info: {str(e)}"
|
300 |
-
|
301 |
-
def get_dataset_info(self, dataset_name: str) -> str:
|
302 |
-
"""
|
303 |
-
Retrieves detailed information about a specific dataset from the Hugging Face Hub.
|
304 |
-
Includes statistics, a description, and a quick-start code snippet showing how to load the dataset.
|
305 |
-
|
306 |
-
Args:
|
307 |
-
dataset_name (str): The full identifier of the dataset on the Hub, for example 'squad' or 'imdb'.
|
308 |
-
"""
|
309 |
-
# ... (implementation from previous turn remains the same)
|
310 |
-
try:
|
311 |
-
dataset_name = dataset_name.strip()
|
312 |
-
if not dataset_name: return "Please provide a dataset name."
|
313 |
-
api_url = f"{self.api_url}/datasets/{dataset_name}"
|
314 |
-
response = self.session.get(api_url, timeout=15)
|
315 |
-
if response.status_code == 404: return f"❌ Dataset '{dataset_name}' not found. Please check the dataset name."
|
316 |
-
elif response.status_code != 200: return f"❌ Error fetching dataset info (Status: {response.status_code})"
|
317 |
-
dataset_data = response.json()
|
318 |
-
result = f"# 📊 Dataset: {dataset_name}\n\n"
|
319 |
-
downloads = dataset_data.get('downloads', 0)
|
320 |
-
likes = dataset_data.get('likes', 0)
|
321 |
-
result += f"**📈 Statistics:**\n• **Downloads:** {downloads:,}\n• **Likes:** {likes:,}\n• **Created:** {dataset_data.get('createdAt', 'N/A')[:10]}\n• **Updated:** {dataset_data.get('lastModified', 'N/A')[:10]}\n\n"
|
322 |
-
if 'tags' in dataset_data and dataset_data['tags']: result += f"**🏷️ Tags:** {', '.join(dataset_data['tags'][:10])}\n\n"
|
323 |
-
dataset_url = f"{self.base_url}/datasets/{dataset_name}"
|
324 |
-
page_content = self._fetch_with_retry(dataset_url)
|
325 |
-
if page_content:
|
326 |
-
soup = BeautifulSoup(page_content, 'html.parser')
|
327 |
-
readme_content = soup.find('div', class_=re.compile(r'prose|readme|dataset-card'))
|
328 |
-
if readme_content:
|
329 |
-
paragraphs = readme_content.find_all('p')[:3]
|
330 |
-
description_parts = []
|
331 |
-
for p in paragraphs:
|
332 |
-
text = p.get_text(strip=True)
|
333 |
-
if len(text) > 30: description_parts.append(text)
|
334 |
-
if description_parts:
|
335 |
-
description = ' '.join(description_parts)
|
336 |
-
result += f"**📝 Description:**\n{description[:800]}{'...' if len(description) > 800 else ''}\n\n"
|
337 |
-
code_examples = self._extract_code_examples(soup)
|
338 |
-
if code_examples:
|
339 |
-
result += "**💻 Usage Examples:**\n\n"
|
340 |
-
for i, code_block in enumerate(code_examples[:3], 1):
|
341 |
-
lang = code_block.get('language', 'python')
|
342 |
-
result += f"*Example {i}:*\n```{lang}\n{code_block['code']}\n```\n\n"
|
343 |
-
result += f"**🚀 Quick Start Template:**\n"
|
344 |
-
result += f"```python\nfrom datasets import load_dataset\n\n# Load the dataset\ndataset = load_dataset('{dataset_name}')\n\n# Explore the dataset\nprint(dataset)\nprint(f\"Dataset keys: {{list(dataset.keys())}}\")\n\n# Access first example\nif 'train' in dataset:\n print(\"First example:\")\n print(dataset['train'][0])\n```\n\n"
|
345 |
-
result += f"**🔗 Dataset Page:** {dataset_url}\n"
|
346 |
-
return result
|
347 |
-
except requests.exceptions.RequestException as e: return f"❌ Network error: {str(e)}"
|
348 |
-
except Exception as e:
|
349 |
-
logger.error(f"Error in get_dataset_info: {e}")
|
350 |
-
return f"❌ Error fetching dataset info: {str(e)}"
|
351 |
-
|
352 |
-
def search_models(self, task: str, limit: str = "5") -> str:
|
353 |
-
"""
|
354 |
-
Searches the Hugging Face Hub for models based on a specified task or keyword and returns a list of top models.
|
355 |
-
Each result includes statistics and a quick usage example.
|
356 |
-
|
357 |
-
Args:
|
358 |
-
task (str): The task to search for, such as 'text-classification', 'image-generation', or 'question-answering'.
|
359 |
-
limit (str): The maximum number of models to return. Defaults to '5'.
|
360 |
-
"""
|
361 |
-
# ... (implementation from previous turn remains the same)
|
362 |
-
try:
|
363 |
-
task = task.strip()
|
364 |
-
if not task: return "Please provide a search task or keyword."
|
365 |
-
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 5
|
366 |
-
limit = min(max(limit, 1), 10)
|
367 |
-
params = {'search': task, 'limit': limit * 3, 'sort': 'downloads', 'direction': -1}
|
368 |
-
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20)
|
369 |
-
response.raise_for_status()
|
370 |
-
models = response.json()
|
371 |
-
if not models: return f"❌ No models found for task: '{task}'. Try different keywords."
|
372 |
-
filtered_models = []
|
373 |
-
for model in models:
|
374 |
-
if (model.get('downloads', 0) > 0 or model.get('likes', 0) > 0 or 'pipeline_tag' in model):
|
375 |
-
filtered_models.append(model)
|
376 |
-
if len(filtered_models) >= limit: break
|
377 |
-
if not filtered_models: filtered_models = models[:limit]
|
378 |
-
result = f"# 🔍 Top {len(filtered_models)} Models for '{task}'\n\n"
|
379 |
-
for i, model in enumerate(filtered_models, 1):
|
380 |
-
model_id = model.get('id', 'Unknown')
|
381 |
-
downloads = model.get('downloads', 0)
|
382 |
-
likes = model.get('likes', 0)
|
383 |
-
task_type = model.get('pipeline_tag', 'N/A')
|
384 |
-
library = model.get('library_name', 'N/A')
|
385 |
-
quality_score = ""
|
386 |
-
if downloads > 10000: quality_score = "⭐ Popular"
|
387 |
-
elif downloads > 1000: quality_score = "🔥 Active"
|
388 |
-
elif likes > 10: quality_score = "👍 Liked"
|
389 |
-
result += f"## {i}. {model_id} {quality_score}\n\n"
|
390 |
-
result += f"**📊 Stats:**\n• **Downloads:** {downloads:,}\n• **Likes:** {likes}\n• **Task:** {task_type}\n• **Library:** {library}\n\n"
|
391 |
-
if task_type and task_type != 'N/A':
|
392 |
-
result += f"**🚀 Quick Usage:**\n"
|
393 |
-
if library == 'transformers':
|
394 |
-
result += f"```python\nfrom transformers import pipeline\n\n# Load model\nmodel = pipeline('{task_type}', model='{model_id}')\n\n# Use model\nresult = model(\"Your input here\")\nprint(result)\n```\n\n"
|
395 |
-
else:
|
396 |
-
result += f"```python\n# Load and use {model_id}\n# Check model page for specific usage instructions\n```\n\n"
|
397 |
-
result += f"**🔗 Model Page:** {self.base_url}/{model_id}\n\n---\n\n"
|
398 |
-
return result
|
399 |
-
except requests.exceptions.RequestException as e: return f"❌ Network error: {str(e)}"
|
400 |
-
except Exception as e:
|
401 |
-
logger.error(f"Error in search_models: {e}")
|
402 |
-
return f"❌ Error searching models: {str(e)}"
|
403 |
-
|
404 |
-
def get_transformers_docs(self, topic: str) -> str:
|
405 |
-
"""
|
406 |
-
Fetches detailed documentation specifically for the Hugging Face Transformers library on a given topic.
|
407 |
-
This provides in-depth explanations, code examples, and parameter descriptions for core library components.
|
408 |
-
|
409 |
-
Args:
|
410 |
-
topic (str): The Transformers library topic to look up, such as 'pipeline', 'tokenizer', 'trainer', or 'generation'.
|
411 |
-
"""
|
412 |
-
# ... (implementation from previous turn remains the same)
|
413 |
-
try:
|
414 |
-
topic = topic.strip().lower()
|
415 |
-
if not topic: return "Please provide a topic to search for."
|
416 |
-
docs_url = "https://huggingface.co/docs/transformers"
|
417 |
-
topic_map = {'pipeline': f"{docs_url}/main_classes/pipelines", 'pipelines': f"{docs_url}/main_classes/pipelines", 'tokenizer': f"{docs_url}/main_classes/tokenizer", 'tokenizers': f"{docs_url}/main_classes/tokenizer", 'trainer': f"{docs_url}/main_classes/trainer", 'training': f"{docs_url}/training", 'model': f"{docs_url}/main_classes/model", 'models': f"{docs_url}/main_classes/model", 'configuration': f"{docs_url}/main_classes/configuration", 'config': f"{docs_url}/main_classes/configuration", 'quicktour': f"{docs_url}/quicktour", 'quick': f"{docs_url}/quicktour", 'installation': f"{docs_url}/installation", 'install': f"{docs_url}/installation", 'tutorial': f"{docs_url}/tutorials", 'tutorials': f"{docs_url}/tutorials", 'generation': f"{docs_url}/main_classes/text_generation", 'text_generation': f"{docs_url}/main_classes/text_generation", 'preprocessing': f"{docs_url}/preprocessing", 'preprocess': f"{docs_url}/preprocessing", 'peft': f"{docs_url}/peft", 'lora': f"{docs_url}/peft", 'quantization': f"{docs_url}/main_classes/quantization", 'optimization': f"{docs_url}/perf_train_gpu_one", 'performance': f"{docs_url}/perf_train_gpu_one", 'deployment': f"{docs_url}/deployment", 'custom': f"{docs_url}/custom_models", 'fine-tuning': f"{docs_url}/training", 'finetuning': f"{docs_url}/training"}
|
418 |
-
url = topic_map.get(topic)
|
419 |
-
if not url:
|
420 |
-
for key, value in topic_map.items():
|
421 |
-
if topic in key or key in topic:
|
422 |
-
url = value
|
423 |
-
topic = key
|
424 |
-
break
|
425 |
-
if not url:
|
426 |
-
url = f"{docs_url}/quicktour"
|
427 |
-
topic = "quicktour"
|
428 |
-
content = self._fetch_with_retry(url)
|
429 |
-
if not content: return f"❌ Could not fetch documentation for '{topic}'. Please try again or visit: {url}"
|
430 |
-
soup = BeautifulSoup(content, 'html.parser')
|
431 |
-
practical_content = self._extract_practical_content(soup, topic)
|
432 |
-
result = f"# 📚 Transformers Documentation: {topic.replace('_', ' ').title()}\n\n"
|
433 |
-
if practical_content['overview']: result += f"**📖 Overview:**\n{practical_content['overview']}\n\n"
|
434 |
-
if practical_content['installation']: result += f"**⚙️ Installation:**\n{practical_content['installation']}\n\n"
|
435 |
-
if practical_content['code_examples']:
|
436 |
-
result += "**💻 Code Examples:**\n\n"
|
437 |
-
for i, code_block in enumerate(practical_content['code_examples'][:4], 1):
|
438 |
-
lang = code_block.get('language', 'python')
|
439 |
-
code_type = code_block.get('type', 'example')
|
440 |
-
result += f"### {code_type.title()} {i}:\n```{lang}\n{code_block['code']}\n```\n\n"
|
441 |
-
if practical_content['usage_instructions']:
|
442 |
-
result += "**🛠️ Step-by-Step Usage:**\n"
|
443 |
-
for i, instruction in enumerate(practical_content['usage_instructions'][:6], 1):
|
444 |
-
result += f"{i}. {instruction}\n"
|
445 |
-
result += "\n"
|
446 |
-
if practical_content['parameters']:
|
447 |
-
result += "**⚙️ Key Parameters:**\n"
|
448 |
-
for param in practical_content['parameters'][:10]:
|
449 |
-
param_type = f" (`{param['type']}`)" if param.get('type') else ""
|
450 |
-
default_val = f" *Default: `{param['default']}`*" if param.get('default') else ""
|
451 |
-
result += f"• **`{param['name']}`**{param_type}: {param['description']}{default_val}\n"
|
452 |
-
result += "\n"
|
453 |
-
related_topics = [k for k in topic_map.keys() if k != topic][:5]
|
454 |
-
if related_topics: result += f"**🔗 Related Topics:** {', '.join(related_topics)}\n\n"
|
455 |
-
result += f"**📄 Full Documentation:** {url}\n"
|
456 |
-
return result
|
457 |
-
except Exception as e:
|
458 |
-
logger.error(f"Error in get_transformers_docs: {e}")
|
459 |
-
return f"❌ Error fetching Transformers documentation: {str(e)}"
|
460 |
-
|
461 |
-
def get_trending_models(self, limit: str = "10") -> str:
|
462 |
-
"""
|
463 |
-
Fetches a list of the most downloaded models currently trending on the Hugging Face Hub.
|
464 |
-
This is useful for discovering popular and widely-used models.
|
465 |
-
|
466 |
-
Args:
|
467 |
-
limit (str): The number of trending models to return. Defaults to '10'.
|
468 |
-
"""
|
469 |
-
# ... (implementation from previous turn remains the same)
|
470 |
-
try:
|
471 |
-
limit = int(limit) if isinstance(limit, str) and limit.isdigit() else 10
|
472 |
-
limit = min(max(limit, 1), 20)
|
473 |
-
params = {'sort': 'downloads', 'direction': -1, 'limit': limit}
|
474 |
-
response = self.session.get(f"{self.api_url}/models", params=params, timeout=20)
|
475 |
-
response.raise_for_status()
|
476 |
-
models = response.json()
|
477 |
-
if not models: return "❌ Could not fetch trending models."
|
478 |
-
result = f"# 🔥 Trending Models (Top {len(models)})\n\n"
|
479 |
-
for i, model in enumerate(models, 1):
|
480 |
-
model_id = model.get('id', 'Unknown')
|
481 |
-
downloads = model.get('downloads', 0)
|
482 |
-
likes = model.get('likes', 0)
|
483 |
-
task = model.get('pipeline_tag', 'N/A')
|
484 |
-
if downloads > 1000000: trend = "🚀 Mega Popular"
|
485 |
-
elif downloads > 100000: trend = "🔥 Very Popular"
|
486 |
-
elif downloads > 10000: trend = "⭐ Popular"
|
487 |
-
else: trend = "📈 Trending"
|
488 |
-
result += f"## {i}. {model_id} {trend}\n"
|
489 |
-
result += f"• **Downloads:** {downloads:,} | **Likes:** {likes} | **Task:** {task}\n"
|
490 |
-
result += f"• **Link:** {self.base_url}/{model_id}\n\n"
|
491 |
-
return result
|
492 |
-
except Exception as e:
|
493 |
-
logger.error(f"Error in get_trending_models: {e}")
|
494 |
-
return f"❌ Error fetching trending models: {str(e)}"
|
495 |
-
|
496 |
-
# Initialize the server
|
497 |
-
hf_server = HuggingFaceInfoServer()
|
498 |
-
|
499 |
-
# Create Gradio interface
|
500 |
-
with gr.Blocks(
|
501 |
-
title="🤗 Hugging Face Information Server",
|
502 |
-
theme=gr.themes.Soft(),
|
503 |
-
css="""
|
504 |
-
.gradio-container {
|
505 |
-
font-family: 'Inter', sans-serif;
|
506 |
-
}
|
507 |
-
.main-header {
|
508 |
-
text-align: center;
|
509 |
-
padding: 20px;
|
510 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
511 |
-
color: white;
|
512 |
-
border-radius: 10px;
|
513 |
-
margin-bottom: 20px;
|
514 |
-
}
|
515 |
-
"""
|
516 |
-
) as demo:
|
517 |
-
|
518 |
-
# Header
|
519 |
-
with gr.Row():
|
520 |
-
gr.HTML("""
|
521 |
-
<div class="main-header">
|
522 |
-
<h1>🤗 Hugging Face Information Server</h1>
|
523 |
-
<p>Get comprehensive documentation with <strong>real code examples</strong>, <strong>usage instructions</strong>, and <strong>practical content</strong></p>
|
524 |
-
</div>
|
525 |
-
""")
|
526 |
-
|
527 |
-
with gr.Tab("📚 Documentation Search", elem_id="docs"):
|
528 |
-
gr.Markdown("### Search for documentation with **comprehensive code examples** and **step-by-step instructions**")
|
529 |
-
|
530 |
-
with gr.Row():
|
531 |
-
with gr.Column(scale=3):
|
532 |
-
doc_query = gr.Textbox(label="🔍 Search Query", placeholder="e.g., tokenizer, pipeline, fine-tuning, peft, trainer, quantization")
|
533 |
-
with gr.Column(scale=1):
|
534 |
-
doc_max_results = gr.Number(label="Max Results", value=2, minimum=1, maximum=5)
|
535 |
-
|
536 |
-
doc_output = gr.Textbox(label="📖 Documentation with Examples", lines=25, max_lines=30)
|
537 |
-
|
538 |
-
with gr.Row():
|
539 |
-
doc_btn = gr.Button("🔍 Search Documentation", variant="primary", size="lg")
|
540 |
-
doc_clear = gr.Button("🗑️ Clear", variant="secondary")
|
541 |
-
|
542 |
-
gr.Markdown("**Quick Examples:**")
|
543 |
-
with gr.Row():
|
544 |
-
gr.Button("Pipeline", size="sm").click(lambda: "pipeline", outputs=doc_query)
|
545 |
-
gr.Button("Tokenizer", size="sm").click(lambda: "tokenizer", outputs=doc_query)
|
546 |
-
gr.Button("Fine-tuning", size="sm").click(lambda: "fine-tuning", outputs=doc_query)
|
547 |
-
gr.Button("PEFT", size="sm").click(lambda: "peft", outputs=doc_query)
|
548 |
-
|
549 |
-
doc_btn.click(lambda q, m: hf_server.search_documentation(q, int(m) if str(m).isdigit() else 2), inputs=[doc_query, doc_max_results], outputs=doc_output)
|
550 |
-
doc_clear.click(lambda: "", outputs=doc_output)
|
551 |
-
|
552 |
-
# ... (The rest of the UI tabs remain the same) ...
|
553 |
-
with gr.Tab("🤖 Model Information", elem_id="models"):
|
554 |
-
gr.Markdown("### Get detailed model information with **usage examples** and **code snippets**")
|
555 |
-
model_name = gr.Textbox(label="🤖 Model Name", placeholder="e.g., bert-base-uncased, gpt2, microsoft/DialoGPT-medium, meta-llama/Llama-2-7b-hf")
|
556 |
-
model_output = gr.Textbox(label="📊 Model Information + Usage Examples", lines=25, max_lines=30)
|
557 |
-
with gr.Row():
|
558 |
-
model_btn = gr.Button("📊 Get Model Info", variant="primary", size="lg")
|
559 |
-
model_clear = gr.Button("🗑️ Clear", variant="secondary")
|
560 |
-
gr.Markdown("**Popular Models:**")
|
561 |
-
with gr.Row():
|
562 |
-
gr.Button("BERT", size="sm").click(lambda: "bert-base-uncased", outputs=model_name)
|
563 |
-
gr.Button("GPT-2", size="sm").click(lambda: "gpt2", outputs=model_name)
|
564 |
-
gr.Button("T5", size="sm").click(lambda: "t5-small", outputs=model_name)
|
565 |
-
gr.Button("DistilBERT", size="sm").click(lambda: "distilbert-base-uncased", outputs=model_name)
|
566 |
-
model_btn.click(hf_server.get_model_info, inputs=model_name, outputs=model_output)
|
567 |
-
model_clear.click(lambda: "", outputs=model_output)
|
568 |
-
|
569 |
-
with gr.Tab("📊 Dataset Information", elem_id="datasets"):
|
570 |
-
gr.Markdown("### Get dataset information with **loading examples** and **usage code**")
|
571 |
-
dataset_name = gr.Textbox(label="📊 Dataset Name", placeholder="e.g., squad, imdb, glue, common_voice, wikitext")
|
572 |
-
dataset_output = gr.Textbox(label="📈 Dataset Information + Usage Examples", lines=25, max_lines=30)
|
573 |
-
with gr.Row():
|
574 |
-
dataset_btn = gr.Button("📈 Get Dataset Info", variant="primary", size="lg")
|
575 |
-
dataset_clear = gr.Button("🗑️ Clear", variant="secondary")
|
576 |
-
gr.Markdown("**Popular Datasets:**")
|
577 |
-
with gr.Row():
|
578 |
-
gr.Button("SQuAD", size="sm").click(lambda: "squad", outputs=dataset_name)
|
579 |
-
gr.Button("IMDB", size="sm").click(lambda: "imdb", outputs=dataset_name)
|
580 |
-
gr.Button("GLUE", size="sm").click(lambda: "glue", outputs=dataset_name)
|
581 |
-
gr.Button("Common Voice", size="sm").click(lambda: "common_voice", outputs=dataset_name)
|
582 |
-
dataset_btn.click(hf_server.get_dataset_info, inputs=dataset_name, outputs=dataset_output)
|
583 |
-
dataset_clear.click(lambda: "", outputs=dataset_output)
|
584 |
-
|
585 |
-
with gr.Tab("🔍 Model Search", elem_id="search"):
|
586 |
-
gr.Markdown("### Search models with **quick usage examples** and **quality indicators**")
|
587 |
-
with gr.Row():
|
588 |
-
with gr.Column(scale=3):
|
589 |
-
search_task = gr.Textbox(label="🔍 Task or Keyword", placeholder="e.g., text-classification, image-generation, question-answering, sentiment-analysis")
|
590 |
-
with gr.Column(scale=1):
|
591 |
-
search_limit = gr.Number(label="Max Results", value=5, minimum=1, maximum=10)
|
592 |
-
search_output = gr.Textbox(label="🚀 Models with Usage Examples", lines=25, max_lines=30)
|
593 |
-
with gr.Row():
|
594 |
-
search_btn = gr.Button("🚀 Search Models", variant="primary", size="lg")
|
595 |
-
search_clear = gr.Button("🗑️ Clear", variant="secondary")
|
596 |
-
gr.Markdown("**Popular Tasks:**")
|
597 |
-
with gr.Row():
|
598 |
-
gr.Button("Text Classification", size="sm").click(lambda: "text-classification", outputs=search_task)
|
599 |
-
gr.Button("Question Answering", size="sm").click(lambda: "question-answering", outputs=search_task)
|
600 |
-
gr.Button("Text Generation", size="sm").click(lambda: "text-generation", outputs=search_task)
|
601 |
-
gr.Button("Image Classification", size="sm").click(lambda: "image-classification", outputs=search_task)
|
602 |
-
search_btn.click(lambda task, limit: hf_server.search_models(task, int(limit) if str(limit).isdigit() else 5), inputs=[search_task, search_limit], outputs=search_output)
|
603 |
-
search_clear.click(lambda: "", outputs=search_output)
|
604 |
-
|
605 |
-
with gr.Tab("⚡ Transformers Docs", elem_id="transformers"):
|
606 |
-
gr.Markdown("### Get comprehensive Transformers documentation with **detailed examples** and **parameters**")
|
607 |
-
transformers_topic = gr.Textbox(label="📚 Topic", placeholder="e.g., pipeline, tokenizer, trainer, model, peft, generation, quantization")
|
608 |
-
transformers_output = gr.Textbox(label="📖 Comprehensive Documentation", lines=25, max_lines=30)
|
609 |
-
with gr.Row():
|
610 |
-
transformers_btn = gr.Button("📖 Get Documentation", variant="primary", size="lg")
|
611 |
-
transformers_clear = gr.Button("🗑️ Clear", variant="secondary")
|
612 |
-
gr.Markdown("**Core Topics:**")
|
613 |
-
with gr.Row():
|
614 |
-
gr.Button("Pipeline", size="sm").click(lambda: "pipeline", outputs=transformers_topic)
|
615 |
-
gr.Button("Tokenizer", size="sm").click(lambda: "tokenizer", outputs=transformers_topic)
|
616 |
-
gr.Button("Trainer", size="sm").click(lambda: "trainer", outputs=transformers_topic)
|
617 |
-
gr.Button("Generation", size="sm").click(lambda: "generation", outputs=transformers_topic)
|
618 |
-
transformers_btn.click(hf_server.get_transformers_docs, inputs=transformers_topic, outputs=transformers_output)
|
619 |
-
transformers_clear.click(lambda: "", outputs=transformers_output)
|
620 |
-
|
621 |
-
with gr.Tab("🔥 Trending Models", elem_id="trending"):
|
622 |
-
gr.Markdown("### Discover the most popular and trending models")
|
623 |
-
trending_limit = gr.Number(label="Number of Models", value=10, minimum=1, maximum=20)
|
624 |
-
trending_output = gr.Textbox(label="🔥 Trending Models", lines=20, max_lines=25)
|
625 |
-
with gr.Row():
|
626 |
-
trending_btn = gr.Button("🔥 Get Trending Models", variant="primary", size="lg")
|
627 |
-
trending_clear = gr.Button("🗑️ Clear", variant="secondary")
|
628 |
-
trending_btn.click(lambda limit: hf_server.get_trending_models(int(limit) if str(limit).isdigit() else 10), inputs=trending_limit, outputs=trending_output)
|
629 |
-
trending_clear.click(lambda: "", outputs=trending_output)
|
630 |
-
|
631 |
-
# Footer
|
632 |
-
with gr.Row():
|
633 |
-
gr.HTML("""
|
634 |
-
<div style="text-align: center; padding: 20px; color: #666;">
|
635 |
-
<h3>💡 Features</h3>
|
636 |
-
<p><strong>✅ Real code examples</strong> • <strong>✅ Step-by-step instructions</strong> • <strong>✅ Parameter documentation</strong> • <strong>✅ Quality indicators</strong></p>
|
637 |
-
<p><em>Get practical, actionable information, directly from the source.</em></p>
|
638 |
-
</div>
|
639 |
-
""")
|
640 |
-
|
641 |
-
if __name__ == "__main__":
|
642 |
-
print("🚀 Starting Hugging Face Information Server...")
|
643 |
-
print("📊 Features: Code examples, usage instructions, comprehensive documentation")
|
644 |
-
demo.launch(
|
645 |
-
server_name="0.0.0.0",
|
646 |
-
server_port=7860,
|
647 |
-
show_error=True,
|
648 |
-
mcp_server=True
|
649 |
)
|
|
|
34 |
def _is_cache_valid(self, cache_key: str) -> bool:
|
35 |
if cache_key not in self.cache:
|
36 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|