Nihal2000 commited on
Commit
15131ea
Β·
verified Β·
1 Parent(s): a5d8df6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -29
README.md CHANGED
@@ -42,31 +42,32 @@ A powerful Model Context Protocol (MCP) server for intelligent content managemen
42
 
43
  ## πŸ“‹ Complete File Structure
44
  intelligent-content-organizer/
45
- β”œβ”€β”€ app.py # Main Gradio app and MCP server
46
- β”œβ”€β”€ config.py # Configuration management
47
- β”œβ”€β”€ mcp_server.py # mcp server tools
48
- β”œβ”€β”€ requirements.txt # Dependencies
49
- β”œβ”€β”€ README.md # Documentation
50
- β”œβ”€β”€ .gitignore # Git ignore rules
51
- β”œβ”€β”€ core/ # Core processing logic
52
- β”‚ β”œβ”€β”€ init.py
53
- β”‚ β”œβ”€β”€ models.py # Data models
54
- β”‚ β”œβ”€β”€ document_parser.py # Document processing
55
- β”‚ β”œβ”€β”€ text_preprocessor.py # Text cleaning and processing
56
- β”‚ └── chunker.py # Text chunking strategies
57
- β”œβ”€β”€ services/ # Backend services
58
- β”‚ β”œβ”€β”€ init.py
59
- β”‚ β”œβ”€β”€ embedding_service.py # Sentence transformers integration
60
- β”‚ β”œβ”€β”€ llm_service.py # Anthropic + Mistral integration
61
- β”‚ β”œβ”€β”€ ocr_service.py # Mistral OCR integration
62
- β”‚ β”œβ”€β”€ vector_store_service.py # FAISS vector storage
63
- β”‚ └── document_store_service.py # Document metadata storage
64
- └── mcp_tools/ # MCP tool definitions
65
  β”œβ”€β”€ init.py
66
- β”œβ”€β”€ ingestion_tool.py # Document ingestion tool
67
- β”œβ”€β”€ search_tool.py # Semantic search tool
68
- β”œβ”€β”€ generative_tool.py # AI generation tool
69
- └── utils.py # Utility functions
 
70
 
71
  ## 🎯 Key Features Implemented
72
 
@@ -80,12 +81,10 @@ intelligent-content-organizer/
80
 
81
  ## πŸŽ₯ Demo Video
82
 
83
- [πŸ“Ή Watch the demo video](https://your-demo-video-url.com)
84
 
85
  *The demo shows the MCP server in action, demonstrating document ingestion, semantic search, and Q&A capabilities, utilizing the configured LLM providers.*
86
 
87
- ## πŸ› οΈ Installation
88
-
89
  ### Prerequisites
90
 
91
  - Python 3.9+
@@ -152,12 +151,11 @@ intelligent-content-organizer/
152
  - `confidence` (string, optional): Confidence level in the answer (LLM-dependent, might not always be present).
153
 
154
  πŸ“Š Performance
155
-
156
  Embedding Generation: ~100-500ms per document chunk
157
  Search: <50ms for most queries
158
  Summarization: 1-5s depending on content length
159
  Memory Usage: ~200-500MB base + ~1MB per 1000 document chunks
160
- Supported File Types: PDF, TXT, DOCX, PNG, JPG, JPEG, BMP, TIFF
161
 
162
 
163
 
 
42
 
43
  ## πŸ“‹ Complete File Structure
44
  intelligent-content-organizer/
45
+ β”œβ”€β”€ app.py # Main Gradio app and MCP server
46
+ β”œβ”€β”€ config.py # Configuration management
47
+ β”œβ”€β”€ mcp_server.py # MCP server tools (registration, serving logic)
48
+ β”œβ”€β”€ requirements.txt # Dependencies
49
+ β”œβ”€β”€ README.md # Documentation
50
+ β”œβ”€β”€ .gitignore # Git ignore rules
51
+ β”œβ”€β”€ core/ # Core processing logic
52
+ β”‚ β”œβ”€β”€ init.py
53
+ β”‚ β”œβ”€β”€ models.py # Data models (e.g., Document, Chunk)
54
+ β”‚ β”œβ”€β”€ document_parser.py # Document processing (PDF, TXT, DOCX, etc.)
55
+ β”‚ β”œβ”€β”€ text_preprocessor.py # Text cleaning and processing
56
+ β”‚ └── chunker.py # Text chunking strategies
57
+ β”œβ”€β”€ services/ # Backend services
58
+ β”‚ β”œβ”€β”€ init.py
59
+ β”‚ β”œβ”€β”€ embedding_service.py # Sentence transformers integration
60
+ β”‚ β”œβ”€β”€ llm_service.py # Anthropic + Mistral LLM integration
61
+ β”‚ β”œβ”€β”€ ocr_service.py # Mistral OCR integration
62
+ β”‚ β”œβ”€β”€ vector_store_service.py # FAISS vector storage
63
+ β”‚ └── document_store_service.py # Document metadata storage (e.g., SQLite, JSON files)
64
+ └── mcp_tools/ # MCP tool definitions
65
  β”œβ”€β”€ init.py
66
+ β”œβ”€β”€ ingestion_tool.py # Document ingestion tool for MCP
67
+ β”œβ”€β”€ search_tool.py # Semantic search tool for MCP
68
+ β”œβ”€β”€ generative_tool.py # AI generation tool for MCP
69
+ └── utils.py # Utility functions for MCP tools
70
+
71
 
72
  ## 🎯 Key Features Implemented
73
 
 
81
 
82
  ## πŸŽ₯ Demo Video
83
 
84
+ [πŸ“Ή Watch the demo video](https://youtu.be/uBYIj_ntFRk)
85
 
86
  *The demo shows the MCP server in action, demonstrating document ingestion, semantic search, and Q&A capabilities, utilizing the configured LLM providers.*
87
 
 
 
88
  ### Prerequisites
89
 
90
  - Python 3.9+
 
151
  - `confidence` (string, optional): Confidence level in the answer (LLM-dependent, might not always be present).
152
 
153
  πŸ“Š Performance
 
154
  Embedding Generation: ~100-500ms per document chunk
155
  Search: <50ms for most queries
156
  Summarization: 1-5s depending on content length
157
  Memory Usage: ~200-500MB base + ~1MB per 1000 document chunks
158
+ Supported File Types: PDF, TXT, DOCX, PNG, JPG, JPEG
159
 
160
 
161