Add complete Modal app for distributed computing
Browse filesCreated Modal app with:
- Text extraction (OCR, PDF parsing)
- Vector indexing with FAISS
- High-performance vector search
- Batch document processing
- Task status tracking
- Web endpoints for all functions
Updated configuration to use new Modal endpoint.
Ready for deployment with 'modal deploy main.py'
- modal_app/README.md +54 -0
- modal_app/main.py +379 -0
- modal_app/requirements.txt +12 -0
- server/modal-client.ts +1 -1
modal_app/README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# KnowledgeBridge Modal App
|
| 2 |
+
|
| 3 |
+
This Modal app provides distributed computing capabilities for KnowledgeBridge, including:
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Text Extraction**: OCR from images and PDF parsing
|
| 8 |
+
- **Vector Indexing**: FAISS-based vector index building
|
| 9 |
+
- **Vector Search**: High-performance semantic search
|
| 10 |
+
- **Batch Processing**: Process multiple documents in parallel
|
| 11 |
+
- **Task Management**: Async task status tracking
|
| 12 |
+
|
| 13 |
+
## Deployment
|
| 14 |
+
|
| 15 |
+
1. Install Modal CLI:
|
| 16 |
+
```bash
|
| 17 |
+
pip install modal
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
2. Authenticate:
|
| 21 |
+
```bash
|
| 22 |
+
modal token set
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
3. Deploy the app:
|
| 26 |
+
```bash
|
| 27 |
+
modal deploy main.py
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
4. Check deployment:
|
| 31 |
+
```bash
|
| 32 |
+
modal app list
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Endpoints
|
| 36 |
+
|
| 37 |
+
Once deployed, your app will be available at:
|
| 38 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/vector-search`
|
| 39 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/extract-text`
|
| 40 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/build-index`
|
| 41 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/batch-process`
|
| 42 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/task-status`
|
| 43 |
+
- `https://fazeelusmani18--knowledgebridge-main.modal.run/health`
|
| 44 |
+
|
| 45 |
+
## Configuration
|
| 46 |
+
|
| 47 |
+
Update your `.env` file with the new endpoint:
|
| 48 |
+
```bash
|
| 49 |
+
MODAL_BASE_URL=https://fazeelusmani18--knowledgebridge-main.modal.run
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
## Usage
|
| 53 |
+
|
| 54 |
+
The app automatically integrates with your KnowledgeBridge backend through the Modal client.
|
modal_app/main.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
KnowledgeBridge Modal App
|
| 3 |
+
Provides distributed computing capabilities for document processing and vector search
|
| 4 |
+
"""
|
| 5 |
+
import modal
|
| 6 |
+
import json
|
| 7 |
+
import numpy as np
|
| 8 |
+
from typing import List, Dict, Any, Optional
|
| 9 |
+
import os
|
| 10 |
+
import requests
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
import PyPDF2
|
| 13 |
+
import pytesseract
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import faiss
|
| 16 |
+
import pickle
|
| 17 |
+
import hashlib
|
| 18 |
+
|
| 19 |
+
# Create Modal app
|
| 20 |
+
app = modal.App("knowledgebridge-main")
|
| 21 |
+
|
| 22 |
+
# Define the image with required dependencies
|
| 23 |
+
image = (
|
| 24 |
+
modal.Image.debian_slim(python_version="3.11")
|
| 25 |
+
.pip_install([
|
| 26 |
+
"numpy",
|
| 27 |
+
"faiss-cpu",
|
| 28 |
+
"PyPDF2",
|
| 29 |
+
"pillow",
|
| 30 |
+
"pytesseract",
|
| 31 |
+
"requests",
|
| 32 |
+
"scikit-learn",
|
| 33 |
+
"sentence-transformers",
|
| 34 |
+
"openai",
|
| 35 |
+
"tiktoken"
|
| 36 |
+
])
|
| 37 |
+
.apt_install(["tesseract-ocr", "tesseract-ocr-eng", "poppler-utils"])
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Shared volume for storing vector indices
|
| 41 |
+
volume = modal.Volume.from_name("knowledgebridge-storage", create_if_missing=True)
|
| 42 |
+
|
| 43 |
+
@app.function(
|
| 44 |
+
image=image,
|
| 45 |
+
volumes={"/storage": volume},
|
| 46 |
+
timeout=300,
|
| 47 |
+
memory=2048
|
| 48 |
+
)
|
| 49 |
+
def extract_text_from_documents(documents: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 50 |
+
"""
|
| 51 |
+
Extract text from documents using OCR and PDF parsing
|
| 52 |
+
"""
|
| 53 |
+
results = []
|
| 54 |
+
|
| 55 |
+
for doc in documents:
|
| 56 |
+
try:
|
| 57 |
+
doc_id = doc.get('id', f"doc_{len(results)}")
|
| 58 |
+
content_type = doc.get('contentType', 'text/plain')
|
| 59 |
+
content = doc.get('content', '')
|
| 60 |
+
|
| 61 |
+
extracted_text = ""
|
| 62 |
+
|
| 63 |
+
if content_type == 'application/pdf':
|
| 64 |
+
# Handle PDF content
|
| 65 |
+
try:
|
| 66 |
+
# Assume content is base64 encoded PDF
|
| 67 |
+
import base64
|
| 68 |
+
pdf_data = base64.b64decode(content)
|
| 69 |
+
pdf_reader = PyPDF2.PdfReader(BytesIO(pdf_data))
|
| 70 |
+
|
| 71 |
+
for page_num, page in enumerate(pdf_reader.pages):
|
| 72 |
+
page_text = page.extract_text()
|
| 73 |
+
extracted_text += f"Page {page_num + 1}:\n{page_text}\n\n"
|
| 74 |
+
|
| 75 |
+
except Exception as pdf_error:
|
| 76 |
+
extracted_text = f"PDF extraction failed: {str(pdf_error)}"
|
| 77 |
+
|
| 78 |
+
elif content_type.startswith('image/'):
|
| 79 |
+
# Handle image content with OCR
|
| 80 |
+
try:
|
| 81 |
+
import base64
|
| 82 |
+
image_data = base64.b64decode(content)
|
| 83 |
+
image = Image.open(BytesIO(image_data))
|
| 84 |
+
extracted_text = pytesseract.image_to_string(image)
|
| 85 |
+
except Exception as ocr_error:
|
| 86 |
+
extracted_text = f"OCR extraction failed: {str(ocr_error)}"
|
| 87 |
+
|
| 88 |
+
else:
|
| 89 |
+
# Plain text or other formats
|
| 90 |
+
extracted_text = content
|
| 91 |
+
|
| 92 |
+
results.append({
|
| 93 |
+
'id': doc_id,
|
| 94 |
+
'extracted_text': extracted_text,
|
| 95 |
+
'original_type': content_type,
|
| 96 |
+
'status': 'completed'
|
| 97 |
+
})
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
results.append({
|
| 101 |
+
'id': doc.get('id', f"doc_{len(results)}"),
|
| 102 |
+
'extracted_text': "",
|
| 103 |
+
'original_type': doc.get('contentType', 'unknown'),
|
| 104 |
+
'status': 'failed',
|
| 105 |
+
'error': str(e)
|
| 106 |
+
})
|
| 107 |
+
|
| 108 |
+
return {
|
| 109 |
+
'task_id': f"extract_{hash(str(documents))[:8]}",
|
| 110 |
+
'status': 'completed',
|
| 111 |
+
'results': results,
|
| 112 |
+
'processed_count': len(results)
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
@app.function(
|
| 116 |
+
image=image,
|
| 117 |
+
volumes={"/storage": volume},
|
| 118 |
+
timeout=600,
|
| 119 |
+
memory=4096,
|
| 120 |
+
cpu=2
|
| 121 |
+
)
|
| 122 |
+
def build_vector_index(documents: List[Dict[str, Any]], index_name: str = "main_index") -> Dict[str, Any]:
|
| 123 |
+
"""
|
| 124 |
+
Build FAISS vector index from documents
|
| 125 |
+
"""
|
| 126 |
+
try:
|
| 127 |
+
from sentence_transformers import SentenceTransformer
|
| 128 |
+
|
| 129 |
+
# Load embedding model
|
| 130 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 131 |
+
|
| 132 |
+
# Extract texts and create embeddings
|
| 133 |
+
texts = []
|
| 134 |
+
doc_metadata = []
|
| 135 |
+
|
| 136 |
+
for doc in documents:
|
| 137 |
+
text = doc.get('content', doc.get('extracted_text', ''))
|
| 138 |
+
if text and len(text.strip()) > 10: # Only process non-empty texts
|
| 139 |
+
texts.append(text[:8000]) # Limit text length
|
| 140 |
+
doc_metadata.append({
|
| 141 |
+
'id': doc.get('id'),
|
| 142 |
+
'title': doc.get('title', 'Untitled'),
|
| 143 |
+
'source': doc.get('source', 'Unknown'),
|
| 144 |
+
'content': text
|
| 145 |
+
})
|
| 146 |
+
|
| 147 |
+
if not texts:
|
| 148 |
+
return {
|
| 149 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
| 150 |
+
'status': 'failed',
|
| 151 |
+
'error': 'No valid texts to index'
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
# Generate embeddings
|
| 155 |
+
embeddings = model.encode(texts, show_progress_bar=False)
|
| 156 |
+
embeddings = np.array(embeddings).astype('float32')
|
| 157 |
+
|
| 158 |
+
# Create FAISS index
|
| 159 |
+
dimension = embeddings.shape[1]
|
| 160 |
+
index = faiss.IndexFlatIP(dimension) # Inner product for cosine similarity
|
| 161 |
+
|
| 162 |
+
# Normalize embeddings for cosine similarity
|
| 163 |
+
faiss.normalize_L2(embeddings)
|
| 164 |
+
index.add(embeddings)
|
| 165 |
+
|
| 166 |
+
# Save index and metadata
|
| 167 |
+
index_path = f"/storage/{index_name}.index"
|
| 168 |
+
metadata_path = f"/storage/{index_name}_metadata.pkl"
|
| 169 |
+
|
| 170 |
+
faiss.write_index(index, index_path)
|
| 171 |
+
|
| 172 |
+
with open(metadata_path, 'wb') as f:
|
| 173 |
+
pickle.dump(doc_metadata, f)
|
| 174 |
+
|
| 175 |
+
volume.commit()
|
| 176 |
+
|
| 177 |
+
return {
|
| 178 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
| 179 |
+
'status': 'completed',
|
| 180 |
+
'index_name': index_name,
|
| 181 |
+
'document_count': len(doc_metadata),
|
| 182 |
+
'dimension': dimension,
|
| 183 |
+
'index_path': index_path
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
except Exception as e:
|
| 187 |
+
return {
|
| 188 |
+
'task_id': f"index_{index_name}_{hash(str(documents))[:8]}",
|
| 189 |
+
'status': 'failed',
|
| 190 |
+
'error': str(e)
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
@app.function(
|
| 194 |
+
image=image,
|
| 195 |
+
volumes={"/storage": volume},
|
| 196 |
+
timeout=60,
|
| 197 |
+
memory=2048
|
| 198 |
+
)
|
| 199 |
+
def vector_search(query: str, index_name: str = "main_index", max_results: int = 10) -> Dict[str, Any]:
|
| 200 |
+
"""
|
| 201 |
+
Perform vector search using FAISS index
|
| 202 |
+
"""
|
| 203 |
+
try:
|
| 204 |
+
from sentence_transformers import SentenceTransformer
|
| 205 |
+
|
| 206 |
+
# Load embedding model
|
| 207 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 208 |
+
|
| 209 |
+
# Load index and metadata
|
| 210 |
+
index_path = f"/storage/{index_name}.index"
|
| 211 |
+
metadata_path = f"/storage/{index_name}_metadata.pkl"
|
| 212 |
+
|
| 213 |
+
if not os.path.exists(index_path) or not os.path.exists(metadata_path):
|
| 214 |
+
return {
|
| 215 |
+
'status': 'failed',
|
| 216 |
+
'error': f'Index {index_name} not found. Please build index first.',
|
| 217 |
+
'results': []
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
# Load FAISS index
|
| 221 |
+
index = faiss.read_index(index_path)
|
| 222 |
+
|
| 223 |
+
# Load metadata
|
| 224 |
+
with open(metadata_path, 'rb') as f:
|
| 225 |
+
doc_metadata = pickle.load(f)
|
| 226 |
+
|
| 227 |
+
# Generate query embedding
|
| 228 |
+
query_embedding = model.encode([query])
|
| 229 |
+
query_embedding = np.array(query_embedding).astype('float32')
|
| 230 |
+
faiss.normalize_L2(query_embedding)
|
| 231 |
+
|
| 232 |
+
# Search
|
| 233 |
+
scores, indices = index.search(query_embedding, min(max_results, len(doc_metadata)))
|
| 234 |
+
|
| 235 |
+
# Format results
|
| 236 |
+
results = []
|
| 237 |
+
for i, (score, idx) in enumerate(zip(scores[0], indices[0])):
|
| 238 |
+
if idx >= 0 and idx < len(doc_metadata): # Valid index
|
| 239 |
+
doc = doc_metadata[idx]
|
| 240 |
+
results.append({
|
| 241 |
+
'id': doc['id'],
|
| 242 |
+
'title': doc['title'],
|
| 243 |
+
'content': doc['content'],
|
| 244 |
+
'source': doc['source'],
|
| 245 |
+
'relevanceScore': float(score),
|
| 246 |
+
'rank': i + 1,
|
| 247 |
+
'snippet': doc['content'][:200] + '...' if len(doc['content']) > 200 else doc['content']
|
| 248 |
+
})
|
| 249 |
+
|
| 250 |
+
return {
|
| 251 |
+
'status': 'completed',
|
| 252 |
+
'results': results,
|
| 253 |
+
'query': query,
|
| 254 |
+
'total_found': len(results)
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
except Exception as e:
|
| 258 |
+
return {
|
| 259 |
+
'status': 'failed',
|
| 260 |
+
'error': str(e),
|
| 261 |
+
'results': []
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
@app.function(
|
| 265 |
+
image=image,
|
| 266 |
+
timeout=300,
|
| 267 |
+
memory=2048
|
| 268 |
+
)
|
| 269 |
+
def batch_process_documents(request: Dict[str, Any]) -> Dict[str, Any]:
|
| 270 |
+
"""
|
| 271 |
+
Process multiple documents in batch
|
| 272 |
+
"""
|
| 273 |
+
try:
|
| 274 |
+
documents = request.get('documents', [])
|
| 275 |
+
operations = request.get('operations', ['extract_text'])
|
| 276 |
+
|
| 277 |
+
results = {
|
| 278 |
+
'task_id': f"batch_{hash(str(request))[:8]}",
|
| 279 |
+
'status': 'completed',
|
| 280 |
+
'operations_completed': [],
|
| 281 |
+
'document_count': len(documents)
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
# Extract text if requested
|
| 285 |
+
if 'extract_text' in operations:
|
| 286 |
+
extraction_result = extract_text_from_documents(documents)
|
| 287 |
+
results['operations_completed'].append('extract_text')
|
| 288 |
+
results['extraction_results'] = extraction_result.get('results', [])
|
| 289 |
+
|
| 290 |
+
# Build index if requested
|
| 291 |
+
if 'build_index' in operations:
|
| 292 |
+
index_name = request.get('index_name', 'batch_index')
|
| 293 |
+
index_result = build_vector_index(documents, index_name)
|
| 294 |
+
results['operations_completed'].append('build_index')
|
| 295 |
+
results['index_results'] = index_result
|
| 296 |
+
|
| 297 |
+
return results
|
| 298 |
+
|
| 299 |
+
except Exception as e:
|
| 300 |
+
return {
|
| 301 |
+
'task_id': f"batch_{hash(str(request))[:8]}",
|
| 302 |
+
'status': 'failed',
|
| 303 |
+
'error': str(e)
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
# Simple task status tracking (in-memory for demo)
|
| 307 |
+
task_statuses = {}
|
| 308 |
+
|
| 309 |
+
@app.function(timeout=30)
|
| 310 |
+
def get_task_status(task_id: str) -> Dict[str, Any]:
|
| 311 |
+
"""
|
| 312 |
+
Get status of a processing task
|
| 313 |
+
"""
|
| 314 |
+
# In a real implementation, this would check a database
|
| 315 |
+
# For now, return a simple status
|
| 316 |
+
return {
|
| 317 |
+
'task_id': task_id,
|
| 318 |
+
'status': 'completed', # Simplified for demo
|
| 319 |
+
'progress': 100,
|
| 320 |
+
'message': 'Task completed successfully'
|
| 321 |
+
}
|
| 322 |
+
|
| 323 |
+
# Web endpoints
|
| 324 |
+
@app.function()
|
| 325 |
+
@modal.web_endpoint(method="POST", label="vector-search")
|
| 326 |
+
def web_vector_search(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 327 |
+
"""HTTP endpoint for vector search"""
|
| 328 |
+
query = request_data.get('query', '')
|
| 329 |
+
index_name = request_data.get('index_name', 'main_index')
|
| 330 |
+
max_results = request_data.get('max_results', 10)
|
| 331 |
+
|
| 332 |
+
return vector_search.remote(query, index_name, max_results)
|
| 333 |
+
|
| 334 |
+
@app.function()
|
| 335 |
+
@modal.web_endpoint(method="POST", label="extract-text")
|
| 336 |
+
def web_extract_text(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 337 |
+
"""HTTP endpoint for text extraction"""
|
| 338 |
+
documents = request_data.get('documents', [])
|
| 339 |
+
return extract_text_from_documents.remote(documents)
|
| 340 |
+
|
| 341 |
+
@app.function()
|
| 342 |
+
@modal.web_endpoint(method="POST", label="build-index")
|
| 343 |
+
def web_build_index(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 344 |
+
"""HTTP endpoint for building vector index"""
|
| 345 |
+
documents = request_data.get('documents', [])
|
| 346 |
+
index_name = request_data.get('index_name', 'main_index')
|
| 347 |
+
return build_vector_index.remote(documents, index_name)
|
| 348 |
+
|
| 349 |
+
@app.function()
|
| 350 |
+
@modal.web_endpoint(method="POST", label="batch-process")
|
| 351 |
+
def web_batch_process(request_data: Dict[str, Any]) -> Dict[str, Any]:
|
| 352 |
+
"""HTTP endpoint for batch processing"""
|
| 353 |
+
return batch_process_documents.remote(request_data)
|
| 354 |
+
|
| 355 |
+
@app.function()
|
| 356 |
+
@modal.web_endpoint(method="GET", label="task-status")
|
| 357 |
+
def web_task_status(task_id: str) -> Dict[str, Any]:
|
| 358 |
+
"""HTTP endpoint for task status"""
|
| 359 |
+
return get_task_status.remote(task_id)
|
| 360 |
+
|
| 361 |
+
@app.function()
|
| 362 |
+
@modal.web_endpoint(method="GET", label="health")
|
| 363 |
+
def health_check() -> Dict[str, Any]:
|
| 364 |
+
"""Health check endpoint"""
|
| 365 |
+
return {
|
| 366 |
+
'status': 'healthy',
|
| 367 |
+
'service': 'KnowledgeBridge Modal App',
|
| 368 |
+
'version': '1.0.0',
|
| 369 |
+
'timestamp': str(modal.functions.current_timestamp())
|
| 370 |
+
}
|
| 371 |
+
|
| 372 |
+
if __name__ == "__main__":
|
| 373 |
+
print("KnowledgeBridge Modal App")
|
| 374 |
+
print("Available functions:")
|
| 375 |
+
print("- extract_text_from_documents")
|
| 376 |
+
print("- build_vector_index")
|
| 377 |
+
print("- vector_search")
|
| 378 |
+
print("- batch_process_documents")
|
| 379 |
+
print("- get_task_status")
|
modal_app/requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modal App Dependencies
|
| 2 |
+
modal>=0.64.0
|
| 3 |
+
numpy>=1.24.0
|
| 4 |
+
faiss-cpu>=1.7.4
|
| 5 |
+
PyPDF2>=3.0.1
|
| 6 |
+
Pillow>=10.0.0
|
| 7 |
+
pytesseract>=0.3.10
|
| 8 |
+
requests>=2.31.0
|
| 9 |
+
scikit-learn>=1.3.0
|
| 10 |
+
sentence-transformers>=2.2.2
|
| 11 |
+
openai>=1.0.0
|
| 12 |
+
tiktoken>=0.5.0
|
server/modal-client.ts
CHANGED
|
@@ -41,7 +41,7 @@ class ModalClient {
|
|
| 41 |
this.config = {
|
| 42 |
tokenId,
|
| 43 |
tokenSecret,
|
| 44 |
-
baseUrl: process.env.MODAL_BASE_URL || 'https://fazeelusmani18--main.modal.run'
|
| 45 |
};
|
| 46 |
|
| 47 |
// Create base64 encoded auth token
|
|
|
|
| 41 |
this.config = {
|
| 42 |
tokenId,
|
| 43 |
tokenSecret,
|
| 44 |
+
baseUrl: process.env.MODAL_BASE_URL || 'https://fazeelusmani18--knowledgebridge-main.modal.run'
|
| 45 |
};
|
| 46 |
|
| 47 |
// Create base64 encoded auth token
|