Spaces:
Running
Running
import gradio as gr | |
from gradio import File | |
from process.ocr import perform_raw_ocr, correct_text_with_ai | |
from process.interpretation import get_interpretation | |
from process.translation import get_translaton | |
from process.gradio_css import CUSTOM_CSS | |
MISTRAL_API_KEY = "" | |
GEMINI_API_KEY = "" | |
def update_api_keys(mistral_key, gemini_key): | |
""" | |
Updates the global MISTRAL_API_KEY and GEMINI_API_KEY variables. | |
Args: | |
mistral_key: The Mistral API key. | |
gemini_key: The Gemini API key. | |
Returns: | |
A string confirming that the API keys have been saved. | |
""" | |
global MISTRAL_API_KEY, GEMINI_API_KEY | |
MISTRAL_API_KEY = mistral_key | |
GEMINI_API_KEY = gemini_key | |
return "API keys saved" | |
def ocr_workflow_wrapper(file: File, mistral_key: str): | |
""" | |
Manages the OCR workflow, processing an uploaded file to extract text. | |
Args: | |
file: The file object to process (image, PDF, or text). | |
mistral_key: The Mistral API key for OCR processing. | |
Yields: | |
Status messages and the extracted text or error messages. | |
""" | |
if not mistral_key: | |
error_msg = "Error: Mistral API Key not set." | |
yield error_msg, error_msg | |
return | |
if not file or file.name == "": | |
error_msg = "Error: File/Text not found." | |
yield error_msg, error_msg | |
return | |
try: | |
result = perform_raw_ocr(file, mistral_key) | |
yield result, f"\n{result}\n" | |
except Exception as e: | |
error_msg = f"An error occurred during processing: {str(e)}" | |
yield error_msg, error_msg | |
def ai_correct(current_text: str, mistral_key: str): | |
""" | |
Corrects the provided text using an AI model. | |
Args: | |
current_text: The text to be corrected. | |
mistral_key: The Mistral API key for AI correction. | |
Yields: | |
Status messages and the corrected text or error messages. | |
""" | |
if not mistral_key: | |
error_msg = "Error: Mistral API Key not set." | |
yield error_msg, error_msg | |
return | |
if not current_text or current_text.strip() == "": | |
error_msg = "*No text to correct. Upload a file, or paste text into 'Raw Text' box first*" | |
yield error_msg, error_msg | |
return | |
try: | |
result = correct_text_with_ai(current_text, mistral_key) | |
yield result, result | |
except Exception as e: | |
error_msg = f"Error : {e}" | |
yield error_msg, error_msg | |
def interpretation_workflow(text: str, genre: str, learn_language: str, target_language: str, gemini_key: str): | |
""" | |
Generates an interpretation of the text based on genre and language settings. | |
Args: | |
text: The text to interpret. | |
genre: The genre of the text (e.g., "general", "news"). | |
learn_language: The language being learned. | |
target_language: The language for the interpretation output. | |
gemini_key: The Gemini API key for interpretation. | |
Yields: | |
Status messages and the generated interpretation or error messages. | |
""" | |
if not gemini_key: | |
yield "Error: Gemini api key not found." | |
return | |
if not text or text.strip() == "": | |
yield "Error: Text is empty" | |
return | |
if not learn_language or not target_language: | |
yield "Error: Language not selected" | |
return | |
if genre.lower() in ["general", "news", "philosophy"]: | |
result = get_interpretation(genre.lower(), gemini_key, text, learn_language, target_language) | |
yield result | |
else: | |
yield "not implemented yet" | |
def translation_workflow(text: str, target_language: str, gemini_key): | |
""" | |
Translates the provided text to the target language. | |
Args: | |
text: The text to translate. | |
target_language: The language to translate the text into. | |
gemini_key: The Gemini API key for translation. | |
Yields: | |
Status messages and the translated text or error messages. | |
""" | |
if not gemini_key: | |
yield "Error: Gemini api key not found." | |
return | |
if not text or text.strip() == "": | |
yield "Error: Text is empty" | |
return | |
if not target_language: | |
yield "Error: Language not selected" | |
if target_language in ["Deutsch", "English", "Français", "Русский язык", "中文"]: | |
result = get_translaton(text, gemini_key, target_language) | |
yield result | |
else: | |
yield "not implemented yet" | |
with gr.Blocks(theme=gr.themes.Monochrome(), css=CUSTOM_CSS) as demo: | |
gr.Markdown("# 📚 LogosAI - Intensive Reading in Any Language", elem_classes=["section-header"]) | |
# --- API Key --- | |
with gr.Accordion("API Configuration", open=True): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
mistral_api = gr.Textbox( | |
label="Mistral API Key", | |
type="password", | |
placeholder="Enter your key", | |
info="OCR recognition & text processing" | |
) | |
with gr.Column(scale=2): | |
gemini_api = gr.Textbox( | |
label="Gemini API Key", | |
type="password", | |
placeholder="Enter your key", | |
info="text interpretation" | |
) | |
with gr.Column(scale=1): | |
update_keys_button = gr.Button("Save keys") | |
api_key_status_output = gr.Markdown() | |
update_keys_button.click( | |
fn=update_api_keys, | |
inputs=[mistral_api, gemini_api], | |
outputs=api_key_status_output | |
) | |
# --- Text Processing --- | |
gr.Markdown("---") | |
with gr.Tab("Text"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Upload documents") | |
file_input = gr.File( | |
label="Upload Image/PDF/text", | |
file_types=["image", ".pdf", ".txt"] | |
) | |
process_button = gr.Button("1. File Process (OCR/Read)", variant="primary") | |
ai_correct_button = gr.Button("2. AI Correct", variant="primary") | |
with gr.Column(scale=2): | |
gr.Markdown("### Processed result") | |
with gr.Tabs(): | |
with gr.Tab("Raw Text"): | |
text_display = gr.Textbox( | |
label="Raw Text(editable)", | |
lines=15, | |
max_lines=20, | |
show_copy_button=True, | |
value="", | |
interactive=True | |
) | |
with gr.Tab("Formatted Text"): | |
text_markdown = gr.Markdown( | |
value="*Processed text will appear here...*\n\n", | |
label="Formatted Text" | |
) | |
# Hook the ocr button to click event | |
process_button.click( | |
fn=ocr_workflow_wrapper, | |
inputs=[file_input, mistral_api], | |
outputs=[text_display, text_markdown] | |
) | |
# AI correction button to click event | |
ai_correct_button.click( | |
fn=ai_correct, | |
inputs=[text_display, mistral_api], | |
outputs=[text_display, text_markdown] | |
) | |
# --- Text Interpertation --- | |
with gr.Tab("🎓 Interpretation"): | |
gr.Markdown("### Configure Interpretation Settings") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prof_language_seletor = gr.Dropdown(["AR", "DE", "ES", "EN", "FR", "IT", "JA", "RU", "ZH"], label="Prof's Language", value="EN") | |
learn_language_seletor = gr.Dropdown(["AR", "DE", "ES", "EN", "FR", "IT", "JA", "RU", "ZH"], label="Language to Learn", value="EN") | |
style_seletor = gr.Dropdown(["General", "News", "Philosophy", "Narrative", "Poem", "Paper"], label="Genre") | |
interpret_button = gr.Button("Generate Interpretation", variant="primary") | |
with gr.Column(scale=2): | |
gr.Markdown("### COURSE") | |
interpretation_output = gr.Markdown( | |
value="*Interpretation will appear here after processing...*\n\n", | |
label="Interpretation Result", | |
show_copy_button=True | |
) | |
interpret_button.click( | |
fn=interpretation_workflow, | |
inputs=[text_display, style_seletor, learn_language_seletor, prof_language_seletor, gemini_api], | |
outputs=interpretation_output | |
) | |
with gr.Tab("Translation"): | |
gr.Markdown("### Configure Translation Settings") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
target_language_selector = gr.Dropdown( | |
["العربية", "Deutsch", "Español", "English", "Français", "Italiano", "日本語", "Русский язык", "中文"], | |
value="English", | |
label="Target Language", | |
interactive=True) | |
translation_button = gr.Button("Translate!", variant="primary") | |
with gr.Column(scale=2): | |
interpretation_output = gr.Markdown( | |
value="*Translation will appear here ...*\n\n", | |
label="Translation Result", | |
show_copy_button=True | |
) | |
translation_button.click( | |
fn=translation_workflow, | |
inputs=[text_display, target_language_selector, gemini_api], | |
outputs=interpretation_output | |
) | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True) | |