Commit
·
2856ca3
1
Parent(s):
44fb3b3
try again
Browse files
app.py
CHANGED
@@ -1,73 +1,172 @@
|
|
1 |
import json
|
2 |
import pandas as pd
|
3 |
import gradio as gr
|
4 |
-
from typing import Dict, Any
|
5 |
from web2json.preprocessor import BasicPreprocessor
|
6 |
from web2json.ai_extractor import AIExtractor, GeminiLLMClient
|
7 |
from web2json.postprocessor import PostProcessor
|
8 |
from web2json.pipeline import Pipeline
|
9 |
-
from pydantic import BaseModel, Field
|
10 |
import os
|
11 |
import dotenv
|
12 |
|
13 |
dotenv.load_dotenv()
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
"
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
def
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
prompt_template = """Extract the following information from the provided content according to the specified schema.
|
46 |
-
|
47 |
Content to analyze:
|
48 |
{content}
|
49 |
-
|
50 |
Schema requirements:
|
51 |
{schema}
|
52 |
-
|
53 |
Instructions:
|
54 |
- Extract only information that is explicitly present in the content
|
55 |
- Follow the exact structure and data types specified in the schema
|
56 |
- If a required field cannot be found, indicate this clearly
|
57 |
- Preserve the original formatting and context where relevant
|
58 |
- Return the extracted data in the format specified by the schema"""
|
59 |
-
|
60 |
# Initialize pipeline components
|
61 |
preprocessor = BasicPreprocessor(config={'keep_tags': False})
|
62 |
try:
|
63 |
llm = GeminiLLMClient(config={'api_key': os.getenv('GEMINI_API_KEY')})
|
64 |
except Exception as e:
|
65 |
return {"error": f"Failed to initialize LLM client: {str(e)}"}
|
66 |
-
|
67 |
ai_extractor = AIExtractor(llm_client=llm, prompt_template=prompt_template)
|
68 |
postprocessor = PostProcessor()
|
69 |
pipeline = Pipeline(preprocessor, ai_extractor, postprocessor)
|
70 |
-
|
71 |
try:
|
72 |
result = pipeline.run(content, is_url, schema)
|
73 |
print("-"*80)
|
@@ -76,20 +175,94 @@ def webpage_to_json(content: str, is_url: bool, schema_name: str) -> Dict[str, A
|
|
76 |
except Exception as e:
|
77 |
return {"error": f"Processing error: {str(e)}"}
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# Build Gradio Interface
|
80 |
demo = gr.Interface(
|
81 |
-
fn=
|
82 |
inputs=[
|
83 |
-
gr.Textbox(
|
84 |
-
|
|
|
|
|
|
|
85 |
gr.Checkbox(label="Content is URL?", value=False),
|
86 |
-
gr.
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
],
|
89 |
outputs=gr.JSON(label="Output JSON"),
|
90 |
title="Webpage to JSON Converter",
|
91 |
-
description="Convert web pages or raw text into structured JSON using customizable schemas."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
-
demo.launch(mcp_server=True)
|
|
|
1 |
import json
|
2 |
import pandas as pd
|
3 |
import gradio as gr
|
4 |
+
from typing import Dict, Any, Type
|
5 |
from web2json.preprocessor import BasicPreprocessor
|
6 |
from web2json.ai_extractor import AIExtractor, GeminiLLMClient
|
7 |
from web2json.postprocessor import PostProcessor
|
8 |
from web2json.pipeline import Pipeline
|
9 |
+
from pydantic import BaseModel, Field, create_model
|
10 |
import os
|
11 |
import dotenv
|
12 |
|
13 |
dotenv.load_dotenv()
|
14 |
|
15 |
+
def parse_schema_input(schema_input: str) -> Type[BaseModel]:
|
16 |
+
"""
|
17 |
+
Convert user schema input to a Pydantic BaseModel.
|
18 |
+
Supports multiple input formats:
|
19 |
+
1. JSON schema format
|
20 |
+
2. Python class definition
|
21 |
+
3. Simple field definitions
|
22 |
+
"""
|
23 |
+
schema_input = schema_input.strip()
|
24 |
+
|
25 |
+
if not schema_input:
|
26 |
+
# Default schema if none provided
|
27 |
+
return create_model('DefaultSchema',
|
28 |
+
title=(str, Field(description="Title of the content")),
|
29 |
+
content=(str, Field(description="Main content")))
|
30 |
+
|
31 |
+
try:
|
32 |
+
# Try parsing as JSON schema
|
33 |
+
if schema_input.startswith('{'):
|
34 |
+
schema_dict = json.loads(schema_input)
|
35 |
+
return json_schema_to_basemodel(schema_dict)
|
36 |
+
|
37 |
+
# Try parsing as Python class definition
|
38 |
+
elif 'class ' in schema_input and 'BaseModel' in schema_input:
|
39 |
+
return python_class_to_basemodel(schema_input)
|
40 |
+
|
41 |
+
# Try parsing as simple field definitions
|
42 |
+
else:
|
43 |
+
return simple_fields_to_basemodel(schema_input)
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
raise ValueError(f"Could not parse schema: {str(e)}. Please check your schema format.")
|
47 |
|
48 |
+
def json_schema_to_basemodel(schema_dict: Dict) -> Type[BaseModel]:
|
49 |
+
"""Convert JSON schema to BaseModel"""
|
50 |
+
fields = {}
|
51 |
+
properties = schema_dict.get('properties', {})
|
52 |
+
required = schema_dict.get('required', [])
|
53 |
+
|
54 |
+
for field_name, field_info in properties.items():
|
55 |
+
field_type = get_python_type(field_info.get('type', 'string'))
|
56 |
+
field_description = field_info.get('description', '')
|
57 |
+
|
58 |
+
if field_name in required:
|
59 |
+
fields[field_name] = (field_type, Field(description=field_description))
|
60 |
+
else:
|
61 |
+
fields[field_name] = (field_type, Field(default=None, description=field_description))
|
62 |
+
|
63 |
+
return create_model('DynamicSchema', **fields)
|
64 |
|
65 |
+
def python_class_to_basemodel(class_definition: str) -> Type[BaseModel]:
|
66 |
+
"""Convert Python class definition to BaseModel"""
|
67 |
+
try:
|
68 |
+
# Execute the class definition in a safe namespace
|
69 |
+
namespace = {'BaseModel': BaseModel, 'Field': Field, 'str': str, 'int': int,
|
70 |
+
'float': float, 'bool': bool, 'list': list, 'dict': dict}
|
71 |
+
exec(class_definition, namespace)
|
72 |
+
|
73 |
+
# Find the class that inherits from BaseModel
|
74 |
+
for name, obj in namespace.items():
|
75 |
+
if (isinstance(obj, type) and
|
76 |
+
issubclass(obj, BaseModel) and
|
77 |
+
obj != BaseModel):
|
78 |
+
return obj
|
79 |
+
|
80 |
+
raise ValueError("No BaseModel class found in definition")
|
81 |
+
except Exception as e:
|
82 |
+
raise ValueError(f"Invalid Python class definition: {str(e)}")
|
83 |
|
84 |
+
def simple_fields_to_basemodel(fields_text: str) -> Type[BaseModel]:
|
85 |
+
"""Convert simple field definitions to BaseModel"""
|
86 |
+
fields = {}
|
87 |
+
|
88 |
+
for line in fields_text.strip().split('\n'):
|
89 |
+
line = line.strip()
|
90 |
+
if not line or line.startswith('#'):
|
91 |
+
continue
|
92 |
+
|
93 |
+
# Parse field definition (e.g., "name: str = description")
|
94 |
+
if ':' in line:
|
95 |
+
parts = line.split(':', 1)
|
96 |
+
field_name = parts[0].strip()
|
97 |
+
|
98 |
+
type_and_desc = parts[1].strip()
|
99 |
+
if '=' in type_and_desc:
|
100 |
+
type_part, desc_part = type_and_desc.split('=', 1)
|
101 |
+
field_type = get_python_type(type_part.strip())
|
102 |
+
description = desc_part.strip().strip('"\'')
|
103 |
+
else:
|
104 |
+
field_type = get_python_type(type_and_desc.strip())
|
105 |
+
description = ""
|
106 |
+
|
107 |
+
fields[field_name] = (field_type, Field(description=description))
|
108 |
+
else:
|
109 |
+
# Simple field name only
|
110 |
+
field_name = line.strip()
|
111 |
+
fields[field_name] = (str, Field(description=""))
|
112 |
+
|
113 |
+
if not fields:
|
114 |
+
raise ValueError("No valid fields found in schema definition")
|
115 |
+
|
116 |
+
return create_model('DynamicSchema', **fields)
|
117 |
|
118 |
+
def get_python_type(type_str: str):
|
119 |
+
"""Convert type string to Python type"""
|
120 |
+
type_str = type_str.lower().strip()
|
121 |
+
type_mapping = {
|
122 |
+
'string': str, 'str': str,
|
123 |
+
'integer': int, 'int': int,
|
124 |
+
'number': float, 'float': float,
|
125 |
+
'boolean': bool, 'bool': bool,
|
126 |
+
'array': list, 'list': list,
|
127 |
+
'object': dict, 'dict': dict
|
128 |
+
}
|
129 |
+
return type_mapping.get(type_str, str)
|
130 |
|
131 |
+
def webpage_to_json_wrapper(content: str, is_url: bool, schema_input: str) -> Dict[str, Any]:
|
132 |
+
"""Wrapper function that converts schema input to BaseModel"""
|
133 |
+
try:
|
134 |
+
# Parse the schema input into a BaseModel
|
135 |
+
schema_model = parse_schema_input(schema_input)
|
136 |
+
|
137 |
+
# Call the original function
|
138 |
+
return webpage_to_json(content, is_url, schema_model)
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
return {"error": f"Schema parsing error: {str(e)}"}
|
142 |
|
143 |
+
def webpage_to_json(content: str, is_url: bool, schema: BaseModel) -> Dict[str, Any]:
|
144 |
prompt_template = """Extract the following information from the provided content according to the specified schema.
|
145 |
+
|
146 |
Content to analyze:
|
147 |
{content}
|
148 |
+
|
149 |
Schema requirements:
|
150 |
{schema}
|
151 |
+
|
152 |
Instructions:
|
153 |
- Extract only information that is explicitly present in the content
|
154 |
- Follow the exact structure and data types specified in the schema
|
155 |
- If a required field cannot be found, indicate this clearly
|
156 |
- Preserve the original formatting and context where relevant
|
157 |
- Return the extracted data in the format specified by the schema"""
|
158 |
+
|
159 |
# Initialize pipeline components
|
160 |
preprocessor = BasicPreprocessor(config={'keep_tags': False})
|
161 |
try:
|
162 |
llm = GeminiLLMClient(config={'api_key': os.getenv('GEMINI_API_KEY')})
|
163 |
except Exception as e:
|
164 |
return {"error": f"Failed to initialize LLM client: {str(e)}"}
|
165 |
+
|
166 |
ai_extractor = AIExtractor(llm_client=llm, prompt_template=prompt_template)
|
167 |
postprocessor = PostProcessor()
|
168 |
pipeline = Pipeline(preprocessor, ai_extractor, postprocessor)
|
169 |
+
|
170 |
try:
|
171 |
result = pipeline.run(content, is_url, schema)
|
172 |
print("-"*80)
|
|
|
175 |
except Exception as e:
|
176 |
return {"error": f"Processing error: {str(e)}"}
|
177 |
|
178 |
+
# Example schemas for the user
|
179 |
+
example_schemas = """
|
180 |
+
**Example Schema Formats:**
|
181 |
+
|
182 |
+
1. **Simple field definitions:**
|
183 |
+
```
|
184 |
+
title: str = Page title
|
185 |
+
price: float = Product price
|
186 |
+
description: str = Product description
|
187 |
+
available: bool = Is available
|
188 |
+
```
|
189 |
+
|
190 |
+
2. **JSON Schema:**
|
191 |
+
```json
|
192 |
+
{
|
193 |
+
"properties": {
|
194 |
+
"title": {"type": "string", "description": "Page title"},
|
195 |
+
"price": {"type": "number", "description": "Product price"},
|
196 |
+
"description": {"type": "string", "description": "Product description"}
|
197 |
+
},
|
198 |
+
"required": ["title"]
|
199 |
+
}
|
200 |
+
```
|
201 |
+
|
202 |
+
3. **Python Class Definition:**
|
203 |
+
```python
|
204 |
+
class ProductSchema(BaseModel):
|
205 |
+
title: str = Field(description="Product title")
|
206 |
+
price: float = Field(description="Product price")
|
207 |
+
description: str = Field(description="Product description")
|
208 |
+
available: bool = Field(default=False, description="Availability status")
|
209 |
+
```
|
210 |
+
"""
|
211 |
+
|
212 |
# Build Gradio Interface
|
213 |
demo = gr.Interface(
|
214 |
+
fn=webpage_to_json_wrapper,
|
215 |
inputs=[
|
216 |
+
gr.Textbox(
|
217 |
+
label="Content (URL or Raw Text)",
|
218 |
+
lines=10,
|
219 |
+
placeholder="Enter URL or paste raw HTML/text here."
|
220 |
+
),
|
221 |
gr.Checkbox(label="Content is URL?", value=False),
|
222 |
+
gr.Textbox(
|
223 |
+
label="Schema Definition",
|
224 |
+
lines=15,
|
225 |
+
placeholder="Define your extraction schema (see examples below)",
|
226 |
+
info=example_schemas
|
227 |
+
)
|
228 |
],
|
229 |
outputs=gr.JSON(label="Output JSON"),
|
230 |
title="Webpage to JSON Converter",
|
231 |
+
description="Convert web pages or raw text into structured JSON using customizable schemas. Define your schema using simple field definitions, JSON schema, or Python class syntax.",
|
232 |
+
examples=[
|
233 |
+
[
|
234 |
+
"https://example.com",
|
235 |
+
True,
|
236 |
+
"title: str = Page title\nprice: float = Product price\ndescription: str = Description"
|
237 |
+
],
|
238 |
+
[
|
239 |
+
"<h1>Sample Product</h1><p>Price: $29.99</p><p>Great quality item</p>",
|
240 |
+
False,
|
241 |
+
'''{
|
242 |
+
"type": "object",
|
243 |
+
"properties": {
|
244 |
+
"title": {
|
245 |
+
"type": "string",
|
246 |
+
"description": "Name of the product"
|
247 |
+
},
|
248 |
+
"price": {
|
249 |
+
"type": "number",
|
250 |
+
"description": "Price of the product"
|
251 |
+
},
|
252 |
+
"description": {
|
253 |
+
"type": "string",
|
254 |
+
"description": "Detailed description of the product"
|
255 |
+
},
|
256 |
+
"availability": {
|
257 |
+
"type": "boolean",
|
258 |
+
"description": "Whether the product is in stock (true) or not (false)"
|
259 |
+
}
|
260 |
+
},
|
261 |
+
"required": ["title", "price"]
|
262 |
+
}'''
|
263 |
+
]
|
264 |
+
]
|
265 |
)
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
+
demo.launch(mcp_server=True)
|