File size: 5,821 Bytes
4f321e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
from schemas import (
FetchEmailsParams,
ShowEmailParams,
AnalyzeEmailsParams,
DraftReplyParams,
SendReplyParams,
)
from typing import Any, Dict
from email_scraper import scrape_emails_from_sender, _load_email_db, _save_email_db, _is_date_in_range
from datetime import datetime
from typing import List
from openai import OpenAI
import json
from dotenv import load_dotenv
import os
# Load environment variables from .env file
load_dotenv()
# Initialize OpenAI client
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
def extract_date_range(query: str) -> Dict[str, str]:
"""
Use an LLM to extract a date range from a user query.
Returns {"start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
"""
today_str = datetime.today().strftime("%d-%b-%Y")
system_prompt = f"""
You are a date‐range extractor. Today is {today_str}.
Given a user query (in natural language), return _only_ valid JSON with:
{{
"start_date": "DD-MMM-YYYY",
"end_date": "DD-MMM-YYYY"
}}
Interpret relative dates as:
- "today" → {today_str} to {today_str}
- "yesterday" → 1 day ago to 1 day ago
- "last week" → 7 days ago to {today_str}
- "last month" → 30 days ago to {today_str}
- "last N days" → N days ago to {today_str}
Examples:
- "emails from dev agarwal last week"
→ {{ "start_date": "01-Jun-2025", "end_date": "{today_str}" }}
- "show me emails yesterday"
→ {{ "start_date": "06-Jun-2025", "end_date": "06-Jun-2025" }}
Return _only_ the JSON object—no extra text.
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": query}
]
resp = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
content = resp.choices[0].message.content.strip()
# Try direct parse; if the model added fluff, strip to the JSON block.
try:
return json.loads(content)
except json.JSONDecodeError:
start = content.find("{")
end = content.rfind("}") + 1
return json.loads(content[start:end])
def fetch_emails(email: str, query: str) -> Dict:
"""
Fetch emails from a sender within a date range extracted from the query.
Now returns both date info and emails.
Args:
email: The sender's email address
query: The original user query (for date extraction)
Returns:
Dict with date_info and emails
"""
# Extract date range from query
date_info = extract_date_range(query)
start_date = date_info.get("start_date")
end_date = date_info.get("end_date")
# Fetch emails using the existing scraper
emails = scrape_emails_from_sender(email, start_date, end_date)
# Return both date info and emails
return {
"date_info": date_info,
"emails": emails,
"email_count": len(emails)
}
def show_email(message_id: str) -> Dict:
"""
Retrieve the full email record (date, time, subject, content, etc.)
from the local cache by message_id.
"""
db = _load_email_db() # returns { sender_email: { "emails": [...], "last_scraped": ... }, ... }
# Search each sender's email list
for sender_data in db.values():
for email in sender_data.get("emails", []):
if email.get("message_id") == message_id:
return email
# If we didn't find it, raise or return an error structure
raise ValueError(f"No email found with message_id '{message_id}'")
def draft_reply(email: Dict, tone: str) -> str:
# call LLM to generate reply
# return a dummy reply for now
print(f"Drafting reply for email {email['id']} with tone: {tone}")
return f"Drafted reply for email {email['id']} with tone {tone}."
...
def send_reply(message_id: str, reply_body: str) -> Dict:
# SMTP / Gmail API send
print(f"Sending reply to message {message_id} with body: {reply_body}")
...
def analyze_emails(emails: List[Dict]) -> Dict:
"""
Summarize and extract insights from a list of emails.
Returns a dict with this schema:
{
"summary": str, # a concise overview of all emails
"insights": [str, ...] # list of key observations or stats
}
"""
# 1) Prepare the email payload
emails_payload = json.dumps(emails, ensure_ascii=False)
# 2) Build the LLM prompt
system_prompt = """
You are an expert email analyst. You will be given a JSON array of email objects,
each with keys: date, time, subject, content, message_id.
Your job is to produce _only_ valid JSON with two fields:
1. summary: a 1–2 sentence high-level overview of these emails.
2. insights: a list of 3–5 bullet-style observations or statistics
(e.g. "2 job offers found", "overall positive tone", "next action: reply").
Output exactly:
{
"summary": "...",
"insights": ["...", "...", ...]
}
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Here are the emails:\n{emails_payload}"}
]
# 3) Call the LLM
response = client.chat.completions.create(
model="gpt-4o-mini",
temperature=0.0,
messages=messages
)
# 4) Parse and return
content = response.choices[0].message.content.strip()
try:
return json.loads(content)
except json.JSONDecodeError:
# In case the model outputs extra text, extract the JSON block
start = content.find('{')
end = content.rfind('}') + 1
return json.loads(content[start:end])
TOOL_MAPPING = {
"fetch_emails": fetch_emails,
"show_email": show_email,
"analyze_emails": analyze_emails,
"draft_reply": draft_reply,
"send_reply": send_reply,
} |