File size: 6,789 Bytes
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
b0ee7e5
 
 
687083b
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
b0ee7e5
 
 
 
687083b
b0ee7e5
 
687083b
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# orchestrator.py

import os
import json
import re
from typing import Any, Dict, Tuple, Optional
from datetime import datetime

from dotenv import load_dotenv
from openai import OpenAI

from schemas import Plan, PlanStep, FetchEmailsParams
from tools import TOOL_MAPPING

# Load .env and initialize OpenAI client
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
    raise RuntimeError("Missing OPENAI_API_KEY in environment")
client = OpenAI(api_key=api_key)

# File paths for name mapping
NAME_MAPPING_FILE = "name_mapping.json"

# === Hard-coded list of available actions ===
SYSTEM_PLAN_PROMPT = """
You are an email assistant agent. You have access to the following actions:

  β€’ fetch_emails - fetch emails using text search with sender keywords and date extraction (e.g., "swiggy emails last week")  
  β€’ show_email - display specific email content
  β€’ analyze_emails - analyze email patterns or content
  β€’ draft_reply - create a reply to an email
  β€’ send_reply - send a drafted reply
  β€’ done - complete the task

When the user gives you a query, output _only_ valid JSON of this form:

{
  "plan": [
    "fetch_emails",
    ...,
    "done"
  ]
}

Rules:
- Use "fetch_emails" for text-based email search (automatically extracts sender keywords and dates)
- The final entry _must_ be "done"
- If no tool is needed, return `{"plan":["done"]}`

Example: For "show me emails from swiggy today" β†’ ["fetch_emails", "done"]
"""

SYSTEM_VALIDATOR_TEMPLATE = """
You are a plan validator.  
Context (results so far):  
{context}

Next action:  
{action}

Reply _only_ with JSON:
{{
  "should_execute": <true|false>,
  "parameters": <null or a JSON object with this action's parameters>
}}
"""


def _load_name_mapping() -> Dict[str, str]:
    """Load name to email mapping from JSON file"""
    if not os.path.exists(NAME_MAPPING_FILE):
        return {}
    try:
        with open(NAME_MAPPING_FILE, "r") as f:
            return json.load(f)
    except (json.JSONDecodeError, IOError):
        return {}


def _save_name_mapping(mapping: Dict[str, str]):
    """Save name to email mapping to JSON file"""
    with open(NAME_MAPPING_FILE, "w") as f:
        json.dump(mapping, f, indent=2)


def store_name_email_mapping(name: str, email: str):
    """Store new name to email mapping"""
    name_mapping = _load_name_mapping()
    name_mapping[name.lower().strip()] = email.lower().strip()
    _save_name_mapping(name_mapping)


def extract_sender_info(query: str) -> Dict:
    """
    Extract sender information from user query using LLM
    """
    system_prompt = """
You are an email query parser that extracts sender information.

Given a user query, extract the sender intent - the person/entity they want emails from.
This could be:
- A person's name (e.g., "dev", "john smith", "dev agarwal")
- A company/service (e.g., "amazon", "google", "linkedin")
- An email address (e.g., "[email protected]")

Examples:
- "emails from dev agarwal last week" β†’ "dev agarwal"
- "show amazon emails from last month" β†’ "amazon"  
- "emails from [email protected] yesterday" β†’ "[email protected]"
- "get messages from sarah" β†’ "sarah"

Return ONLY valid JSON:
{
  "sender_intent": "extracted name, company, or email"
}
"""
    
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        temperature=0.0,
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": query}
        ],
    )
    
    result = json.loads(response.choices[0].message.content)
    return result


def resolve_sender_email(sender_intent: str) -> Tuple[Optional[str], bool]:
    """
    Resolve sender intent to actual email address
    Returns: (email_address, needs_user_input)
    """
    # Check if it's already an email address
    if "@" in sender_intent:
        return sender_intent.lower(), False
    
    # Load name mapping
    name_mapping = _load_name_mapping()
    
    # Normalize the intent (lowercase for comparison)
    normalized_intent = sender_intent.lower().strip()
    
    # Check direct match
    if normalized_intent in name_mapping:
        return name_mapping[normalized_intent], False
    
    # Check partial matches (fuzzy matching)
    for name, email in name_mapping.items():
        if normalized_intent in name.lower() or name.lower() in normalized_intent:
            return email, False
    
    # No match found
    return None, True


def get_plan_from_llm(user_query: str) -> Plan:
    """
    Ask the LLM which actions to run, in order. No parameters here.
    """
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        temperature=0.0,
        messages=[
            {"role": "system", "content": SYSTEM_PLAN_PROMPT},
            {"role": "user",   "content": user_query},
        ],
    )

    plan_json = json.loads(response.choices[0].message.content)
    steps = [PlanStep(action=a) for a in plan_json["plan"]]
    return Plan(plan=steps)


def think(
    step: PlanStep,
    context: Dict[str, Any],
    user_query: str
) -> Tuple[bool, Optional[PlanStep], Optional[str]]:
    """
    Fill in parameters or skip based on the action:
     - fetch_emails: pass the raw query for text-based search and date extraction
     - others: ask the LLM validator for params
    
    Returns: (should_execute, updated_step, user_prompt_if_needed)
    """
    # 1) fetch_emails β†’ pass the full query for text-based search and date extraction
    if step.action == "fetch_emails":
        params = FetchEmailsParams(
            query=user_query  # Pass the full query for keyword and date extraction
        )
        return True, PlanStep(action="fetch_emails", parameters=params), None

    # 2) everything else β†’ validate & supply params via LLM
    prompt = SYSTEM_VALIDATOR_TEMPLATE.format(
        context=json.dumps(context, indent=2),
        action=step.action,
    )
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        temperature=0.0,
        messages=[
            {"role": "system",  "content": "Validate or supply parameters for this action."},
            {"role": "user",    "content": prompt},
        ],
    )
    verdict = json.loads(response.choices[0].message.content)
    if not verdict.get("should_execute", False):
        return False, None, None

    return True, PlanStep(
        action=step.action,
        parameters=verdict.get("parameters")
    ), None


def act(step: PlanStep) -> Any:
    """
    Dispatch to the actual implementation in tools.py.
    """
    fn = TOOL_MAPPING.get(step.action)
    if fn is None:
        raise ValueError(f"Unknown action '{step.action}'")

    kwargs = step.parameters.model_dump() if step.parameters else {}
    return fn(**kwargs)