File size: 8,400 Bytes
b0ee7e5
 
 
 
 
 
 
 
687083b
 
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
b0ee7e5
687083b
 
b0ee7e5
 
687083b
 
b0ee7e5
687083b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ee7e5
 
687083b
 
 
 
 
 
b0ee7e5
 
 
 
 
687083b
 
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
b0ee7e5
687083b
 
b0ee7e5
 
687083b
b0ee7e5
 
687083b
b0ee7e5
687083b
 
 
 
 
 
 
 
 
 
b0ee7e5
687083b
 
 
 
 
 
 
b0ee7e5
687083b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ee7e5
687083b
 
 
 
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687083b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ee7e5
 
 
 
687083b
b0ee7e5
 
 
 
687083b
 
 
b0ee7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from schemas import (
    FetchEmailsParams,
    ShowEmailParams,
    AnalyzeEmailsParams,
    DraftReplyParams,
    SendReplyParams,
)
from typing import Any, Dict
from email_scraper import scrape_emails_from_sender, scrape_emails_by_text_search, _load_email_db, _save_email_db, _is_date_in_range
from datetime import datetime, timedelta
from typing import List
from openai import OpenAI
import json
from dotenv import load_dotenv
import os

# Load environment variables from .env file
load_dotenv()

# Initialize OpenAI client
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)


def extract_query_info(query: str) -> Dict[str, str]:
    """
    Use an LLM to extract sender information and date range from a user query.
    Returns {"sender_keyword": "company/sender name", "start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
    """
    today_str = datetime.today().strftime("%d-%b-%Y")
    five_days_ago = (datetime.today() - timedelta(days=5)).strftime("%d-%b-%Y")
    
    system_prompt = f"""
You are a query parser for email search. Today is {today_str}.

Given a user query, extract the sender/company keyword and date range. Return _only_ valid JSON with:
{{
  "sender_keyword": "keyword or company name to search for",
  "start_date": "DD-MMM-YYYY", 
  "end_date": "DD-MMM-YYYY"
}}

Rules:
1. Extract sender keywords from phrases like "from swiggy", "swiggy emails", "mails from amazon", etc.
2. If no time is mentioned, use last 5 days: {five_days_ago} to {today_str}
3. Interpret relative dates as:
   - "today" → {today_str} to {today_str}
   - "yesterday" → 1 day ago to 1 day ago  
   - "last week" → 7 days ago to {today_str}
   - "last month" → 30 days ago to {today_str}
   - "last N days" → N days ago to {today_str}

Examples:
- "show me mails for last week from swiggy" 
  → {{"sender_keyword": "swiggy", "start_date": "01-Jun-2025", "end_date": "{today_str}"}}
- "emails from amazon yesterday"
  → {{"sender_keyword": "amazon", "start_date": "06-Jun-2025", "end_date": "06-Jun-2025"}}  
- "show flipkart emails"
  → {{"sender_keyword": "flipkart", "start_date": "{five_days_ago}", "end_date": "{today_str}"}}

Return _only_ the JSON object—no extra text.
"""

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": query}
    ]
    resp = client.chat.completions.create(
        model="gpt-4o-mini",
        temperature=0.0,
        messages=messages
    )
    content = resp.choices[0].message.content.strip()

    # Try direct parse; if the model added fluff, strip to the JSON block.
    try:
        return json.loads(content)
    except json.JSONDecodeError:
        start = content.find("{")
        end = content.rfind("}") + 1
        return json.loads(content[start:end])


def fetch_emails(query: str) -> Dict:
    """
    Fetch emails based on a natural language query that contains sender information and date range.
    Now uses text-based search and returns only summary information, not full content.
    
    Args:
        query: The natural language query (e.g., "show me mails for last week from swiggy")
    
    Returns:
        Dict with query_info, email_summary, analysis, and email_count
    """
    # Extract sender keyword and date range from query
    query_info = extract_query_info(query)
    sender_keyword = query_info.get("sender_keyword", "")
    start_date = query_info.get("start_date")
    end_date = query_info.get("end_date")
    
    print(f"Searching for emails with keyword '{sender_keyword}' between {start_date} and {end_date}")
    
    # Use the new text-based search function
    full_emails = scrape_emails_by_text_search(sender_keyword, start_date, end_date)
    
    if not full_emails:
        return {
            "query_info": query_info,
            "email_summary": [],
            "analysis": {"summary": f"No emails found for '{sender_keyword}' in the specified date range.", "insights": []},
            "email_count": 0
        }
    
    # Create summary version without full content
    email_summary = []
    for email in full_emails:
        summary_email = {
            "date": email.get("date"),
            "time": email.get("time"),
            "subject": email.get("subject"),
            "from": email.get("from", "Unknown Sender"),
            "message_id": email.get("message_id")
            # Note: Removed 'content' to keep response clean
        }
        email_summary.append(summary_email)
    
    # Auto-analyze the emails for insights
    analysis = analyze_emails(full_emails)  # Use full emails for analysis but don't return them
    
    # Return summary info with analysis
    return {
        "query_info": query_info,
        "email_summary": email_summary,
        "analysis": analysis,
        "email_count": len(full_emails)
    }


def show_email(message_id: str) -> Dict:
    """
    Retrieve the full email record (date, time, subject, content, etc.)
    from the local cache by message_id.
    """
    db = _load_email_db()  # returns { sender_email: { "emails": [...], "last_scraped": ... }, ... }

    # Search each sender's email list
    for sender_data in db.values():
        for email in sender_data.get("emails", []):
            if email.get("message_id") == message_id:
                return email

    # If we didn't find it, raise or return an error structure
    raise ValueError(f"No email found with message_id '{message_id}'")


def draft_reply(email: Dict, tone: str) -> str:
    # call LLM to generate reply
    # return a dummy reply for now
    print(f"Drafting reply for email {email['id']} with tone: {tone}")
    return f"Drafted reply for email {email['id']} with tone {tone}."
    ...


def send_reply(message_id: str, reply_body: str) -> Dict:
    # SMTP / Gmail API send
    print(f"Sending reply to message {message_id} with body: {reply_body}")
    ...


def analyze_emails(emails: List[Dict]) -> Dict:
    """
    Summarize and extract insights from a list of emails.
    Returns a dict with this schema:
      {
        "summary": str,        # a concise overview of all emails
        "insights": [str, ...] # list of key observations or stats
      }
    """
    if not emails:
        return {"summary": "No emails to analyze.", "insights": []}
    
    # 1) Create a simplified email summary for analysis (without full content)
    simplified_emails = []
    for email in emails:
        simplified_email = {
            "date": email.get("date"),
            "time": email.get("time"), 
            "subject": email.get("subject"),
            "from": email.get("from", "Unknown Sender"),
            "content_preview": email.get("content", "")[:200] + "..." if email.get("content") else ""
        }
        simplified_emails.append(simplified_email)
    
    emails_payload = json.dumps(simplified_emails, ensure_ascii=False)

    # 2) Build the LLM prompt
    system_prompt = """
You are an expert email analyst. You will be given a JSON array of email objects,
each with keys: date, time, subject, from, content_preview.

Your job is to produce _only_ valid JSON with two fields:
1. summary: a 1–2 sentence high-level overview of these emails.
2. insights: a list of 3–5 bullet-style observations or statistics 
   (e.g. "5 emails from Swiggy", "mostly promotional content", "received over 3 days").

Focus on metadata like senders, subjects, dates, and patterns rather than detailed content analysis.

Output exactly:

{
  "summary": "...",
  "insights": ["...", "...", ...]
}
"""
    messages = [
        {"role": "system",  "content": system_prompt},
        {"role": "user",    "content": f"Here are the emails:\n{emails_payload}"}
    ]

    # 3) Call the LLM
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        temperature=0.0,
        messages=messages
    )

    # 4) Parse and return
    content = response.choices[0].message.content.strip()
    try:
        return json.loads(content)
    except json.JSONDecodeError:
        # In case the model outputs extra text, extract the JSON block
        start = content.find('{')
        end = content.rfind('}') + 1
        return json.loads(content[start:end])


TOOL_MAPPING = {
    "fetch_emails": fetch_emails,
    "show_email": show_email,
    "analyze_emails": analyze_emails,
    "draft_reply": draft_reply,
    "send_reply": send_reply,
}