File size: 9,226 Bytes
e7ad868 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#!/usr/bin/env python3
"""
Enhanced Email Scraper with Intelligent Caching
"""
import os
import imaplib
import json
from email import message_from_bytes
from bs4 import BeautifulSoup
from datetime import datetime, timedelta
from dotenv import load_dotenv
from zoneinfo import ZoneInfo
from email.utils import parsedate_to_datetime
from typing import List, Dict
load_dotenv()
# Email credentials
APP_PASSWORD = os.getenv("APP_PASSWORD")
EMAIL_ID = os.getenv("EMAIL_ID")
EMAIL_DB_FILE = "email_db.json"
def _imap_connect():
"""Connect to Gmail IMAP server"""
try:
mail = imaplib.IMAP4_SSL("imap.gmail.com")
mail.login(EMAIL_ID, APP_PASSWORD)
mail.select('"[Gmail]/All Mail"')
return mail
except Exception as e:
print(f"IMAP connection failed: {e}")
raise
def _email_to_clean_text(msg):
"""Extract clean text from email message"""
# Try HTML first
html_content = None
text_content = None
if msg.is_multipart():
for part in msg.walk():
content_type = part.get_content_type()
if content_type == "text/html":
try:
html_content = part.get_payload(decode=True).decode(errors="ignore")
except:
continue
elif content_type == "text/plain":
try:
text_content = part.get_payload(decode=True).decode(errors="ignore")
except:
continue
else:
# Non-multipart message
content_type = msg.get_content_type()
try:
content = msg.get_payload(decode=True).decode(errors="ignore")
if content_type == "text/html":
html_content = content
else:
text_content = content
except:
pass
# Clean HTML content
if html_content:
soup = BeautifulSoup(html_content, "html.parser")
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
return soup.get_text(separator=' ', strip=True)
elif text_content:
return text_content.strip()
else:
return ""
def _load_email_db() -> Dict:
"""Load email database from file"""
if not os.path.exists(EMAIL_DB_FILE):
return {}
try:
with open(EMAIL_DB_FILE, "r") as f:
return json.load(f)
except (json.JSONDecodeError, IOError):
print(f"Warning: Could not load {EMAIL_DB_FILE}, starting with empty database")
return {}
def _save_email_db(db: Dict):
"""Save email database to file"""
try:
with open(EMAIL_DB_FILE, "w") as f:
json.dump(db, f, indent=2)
except IOError as e:
print(f"Error saving database: {e}")
raise
def _date_to_imap_format(date_str: str) -> str:
"""Convert DD-MMM-YYYY to IMAP date format"""
try:
dt = datetime.strptime(date_str, "%d-%b-%Y")
return dt.strftime("%d-%b-%Y")
except ValueError:
raise ValueError(f"Invalid date format: {date_str}. Expected DD-MMM-YYYY")
def _is_date_in_range(email_date: str, start_date: str, end_date: str) -> bool:
"""Check if email date is within the specified range"""
try:
email_dt = datetime.strptime(email_date, "%d-%b-%Y")
start_dt = datetime.strptime(start_date, "%d-%b-%Y")
end_dt = datetime.strptime(end_date, "%d-%b-%Y")
return start_dt <= email_dt <= end_dt
except ValueError:
return False
def scrape_emails_from_sender(sender_email: str, start_date: str, end_date: str) -> List[Dict]:
"""
Scrape emails from specific sender within date range
Uses intelligent caching to avoid re-scraping
"""
print(f"Scraping emails from {sender_email} between {start_date} and {end_date}")
# Load existing database
db = _load_email_db()
sender_email = sender_email.lower().strip()
# Check if we have cached emails for this sender
if sender_email in db:
cached_emails = db[sender_email].get("emails", [])
# Filter cached emails by date range
filtered_emails = [
email for email in cached_emails
if _is_date_in_range(email["date"], start_date, end_date)
]
# Check if we need to scrape more recent emails
last_scraped = db[sender_email].get("last_scraped", "01-Jan-2020")
today = datetime.today().strftime("%d-%b-%Y")
if last_scraped == today and filtered_emails:
print(f"Using cached emails (last scraped: {last_scraped})")
return filtered_emails
# Need to scrape emails
try:
mail = _imap_connect()
# Prepare IMAP search criteria
start_imap = _date_to_imap_format(start_date)
# Add one day to end_date for BEFORE criteria (IMAP BEFORE is exclusive)
end_dt = datetime.strptime(end_date, "%d-%b-%Y") + timedelta(days=1)
end_imap = end_dt.strftime("%d-%b-%Y")
search_criteria = f'(FROM "{sender_email}") SINCE "{start_imap}" BEFORE "{end_imap}"'
print(f"IMAP search: {search_criteria}")
# Search for emails
status, data = mail.search(None, search_criteria)
if status != 'OK':
raise Exception(f"IMAP search failed: {status}")
email_ids = data[0].split()
print(f"Found {len(email_ids)} emails")
scraped_emails = []
# Process each email
for i, email_id in enumerate(email_ids):
try:
print(f"Processing email {i+1}/{len(email_ids)}")
# Fetch email
status, msg_data = mail.fetch(email_id, "(RFC822)")
if status != 'OK':
continue
# Parse email
msg = message_from_bytes(msg_data[0][1])
# Extract information
subject = msg.get("Subject", "No Subject")
content = _email_to_clean_text(msg)
# Parse date
date_header = msg.get("Date", "")
if date_header:
try:
dt_obj = parsedate_to_datetime(date_header)
# Convert to IST
ist_dt = dt_obj.astimezone(ZoneInfo("Asia/Kolkata"))
email_date = ist_dt.strftime("%d-%b-%Y")
email_time = ist_dt.strftime("%H:%M:%S")
except:
email_date = datetime.today().strftime("%d-%b-%Y")
email_time = "00:00:00"
else:
email_date = datetime.today().strftime("%d-%b-%Y")
email_time = "00:00:00"
# Get message ID for deduplication
message_id = msg.get("Message-ID", f"missing-{email_id.decode()}")
scraped_emails.append({
"date": email_date,
"time": email_time,
"subject": subject,
"content": content[:2000], # Limit content length
"message_id": message_id
})
except Exception as e:
print(f"Error processing email {email_id}: {e}")
continue
mail.logout()
# Update database
if sender_email not in db:
db[sender_email] = {"emails": [], "last_scraped": ""}
# Merge with existing emails (avoid duplicates)
existing_emails = db[sender_email].get("emails", [])
existing_ids = {email.get("message_id") for email in existing_emails}
new_emails = [
email for email in scraped_emails
if email["message_id"] not in existing_ids
]
# Update database
db[sender_email]["emails"] = existing_emails + new_emails
db[sender_email]["last_scraped"] = datetime.today().strftime("%d-%b-%Y")
# Save database
_save_email_db(db)
# Return filtered results
all_emails = db[sender_email]["emails"]
filtered_emails = [
email for email in all_emails
if _is_date_in_range(email["date"], start_date, end_date)
]
print(f"Scraped {len(new_emails)} new emails, returning {len(filtered_emails)} in date range")
return filtered_emails
except Exception as e:
print(f"Email scraping failed: {e}")
raise
# Test the scraper
if __name__ == "__main__":
# Test scraping
try:
emails = scrape_emails_from_sender(
"[email protected]",
"01-Jun-2025",
"07-Jun-2025"
)
print(f"\nFound {len(emails)} emails:")
for email in emails[:3]: # Show first 3
print(f"- {email['date']} {email['time']}: {email['subject']}")
except Exception as e:
print(f"Test failed: {e}") |