scrape fix (#5)
Browse files- scrape fixes (687083b8c3cee9ae4ff81bd2dff4f56bd69fa7d2)
.gitignore
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
.env
|
2 |
myenv/
|
|
|
3 |
|
4 |
__pycache__/
|
5 |
*.py[cod]
|
|
|
1 |
.env
|
2 |
myenv/
|
3 |
+
venv/
|
4 |
|
5 |
__pycache__/
|
6 |
*.py[cod]
|
agentic_implementation/email_scraper.py
CHANGED
@@ -19,17 +19,102 @@ load_dotenv()
|
|
19 |
# Email credentials
|
20 |
APP_PASSWORD = os.getenv("APP_PASSWORD")
|
21 |
EMAIL_ID = os.getenv("EMAIL_ID")
|
|
|
22 |
EMAIL_DB_FILE = "email_db.json"
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def _imap_connect():
|
25 |
"""Connect to Gmail IMAP server"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
|
|
27 |
mail = imaplib.IMAP4_SSL("imap.gmail.com")
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return mail
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
-
print(f"
|
|
|
|
|
|
|
|
|
33 |
raise
|
34 |
|
35 |
def _email_to_clean_text(msg):
|
@@ -249,6 +334,123 @@ def scrape_emails_from_sender(sender_email: str, start_date: str, end_date: str)
|
|
249 |
print(f"Email scraping failed: {e}")
|
250 |
raise
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
# Test the scraper
|
253 |
if __name__ == "__main__":
|
254 |
# Test scraping
|
|
|
19 |
# Email credentials
|
20 |
APP_PASSWORD = os.getenv("APP_PASSWORD")
|
21 |
EMAIL_ID = os.getenv("EMAIL_ID")
|
22 |
+
print("EMAIL_ID: ", EMAIL_ID)
|
23 |
EMAIL_DB_FILE = "email_db.json"
|
24 |
|
25 |
+
def validate_email_setup():
|
26 |
+
"""Validate email setup and credentials"""
|
27 |
+
print("=== Email Setup Validation ===")
|
28 |
+
|
29 |
+
# Check .env file existence
|
30 |
+
env_file_exists = os.path.exists('.env')
|
31 |
+
print(f".env file exists: {'✅ Yes' if env_file_exists else '❌ No'}")
|
32 |
+
|
33 |
+
if not env_file_exists:
|
34 |
+
print("❌ No .env file found! Create one with:")
|
35 |
+
print(" [email protected]")
|
36 |
+
print(" APP_PASSWORD=your_16_char_app_password")
|
37 |
+
print(" OPENAI_API_KEY=your_openai_key")
|
38 |
+
return False
|
39 |
+
|
40 |
+
# Check environment variables
|
41 |
+
issues = []
|
42 |
+
|
43 |
+
if not EMAIL_ID:
|
44 |
+
issues.append("EMAIL_ID not set or empty")
|
45 |
+
elif '@' not in EMAIL_ID:
|
46 |
+
issues.append("EMAIL_ID doesn't look like an email address")
|
47 |
+
elif not EMAIL_ID.endswith('@gmail.com'):
|
48 |
+
issues.append("EMAIL_ID should be a Gmail address (@gmail.com)")
|
49 |
+
|
50 |
+
if not APP_PASSWORD:
|
51 |
+
issues.append("APP_PASSWORD not set or empty")
|
52 |
+
elif len(APP_PASSWORD) != 16:
|
53 |
+
issues.append(f"APP_PASSWORD should be 16 characters, got {len(APP_PASSWORD)}")
|
54 |
+
elif ' ' in APP_PASSWORD:
|
55 |
+
issues.append("APP_PASSWORD should not contain spaces (remove spaces from app password)")
|
56 |
+
|
57 |
+
if not os.getenv("OPENAI_API_KEY"):
|
58 |
+
issues.append("OPENAI_API_KEY not set (needed for query processing)")
|
59 |
+
|
60 |
+
if issues:
|
61 |
+
print("❌ Issues found:")
|
62 |
+
for issue in issues:
|
63 |
+
print(f" - {issue}")
|
64 |
+
return False
|
65 |
+
else:
|
66 |
+
print("✅ All credentials look good!")
|
67 |
+
return True
|
68 |
+
|
69 |
def _imap_connect():
|
70 |
"""Connect to Gmail IMAP server"""
|
71 |
+
print("=== IMAP Connection Debug ===")
|
72 |
+
|
73 |
+
# Check if environment variables are loaded
|
74 |
+
print(f"EMAIL_ID loaded: {'✅ Yes' if EMAIL_ID else '❌ No (None/Empty)'}")
|
75 |
+
print(f"APP_PASSWORD loaded: {'✅ Yes' if APP_PASSWORD else '❌ No (None/Empty)'}")
|
76 |
+
|
77 |
+
if EMAIL_ID:
|
78 |
+
print(f"Email ID: {EMAIL_ID[:5]}...@{EMAIL_ID.split('@')[1] if '@' in EMAIL_ID else 'INVALID'}")
|
79 |
+
if APP_PASSWORD:
|
80 |
+
print(f"App Password length: {len(APP_PASSWORD)} characters")
|
81 |
+
print(f"App Password format: {'✅ Looks correct (16 chars)' if len(APP_PASSWORD) == 16 else f'❌ Expected 16 chars, got {len(APP_PASSWORD)}'}")
|
82 |
+
|
83 |
+
if not EMAIL_ID or not APP_PASSWORD:
|
84 |
+
error_msg = "Missing credentials in environment variables!"
|
85 |
+
print(f"❌ {error_msg}")
|
86 |
+
raise Exception(error_msg)
|
87 |
+
|
88 |
try:
|
89 |
+
print("🔄 Attempting IMAP SSL connection to imap.gmail.com:993...")
|
90 |
mail = imaplib.IMAP4_SSL("imap.gmail.com")
|
91 |
+
print("✅ SSL connection established")
|
92 |
+
|
93 |
+
print("🔄 Attempting login...")
|
94 |
+
result = mail.login(EMAIL_ID, APP_PASSWORD)
|
95 |
+
print(f"✅ Login successful: {result}")
|
96 |
+
|
97 |
+
print("🔄 Selecting mailbox: [Gmail]/All Mail...")
|
98 |
+
result = mail.select('"[Gmail]/All Mail"')
|
99 |
+
print(f"✅ Mailbox selected: {result}")
|
100 |
+
|
101 |
+
print("=== IMAP Connection Successful ===")
|
102 |
return mail
|
103 |
+
|
104 |
+
except imaplib.IMAP4.error as e:
|
105 |
+
print(f"❌ IMAP Error: {e}")
|
106 |
+
print("💡 Possible causes:")
|
107 |
+
print(" - App Password is incorrect or expired")
|
108 |
+
print(" - 2FA not enabled on Gmail account")
|
109 |
+
print(" - IMAP access not enabled in Gmail settings")
|
110 |
+
print(" - Gmail account locked or requires security verification")
|
111 |
+
raise
|
112 |
except Exception as e:
|
113 |
+
print(f"❌ Connection Error: {e}")
|
114 |
+
print("💡 Possible causes:")
|
115 |
+
print(" - Network connectivity issues")
|
116 |
+
print(" - Gmail IMAP server temporarily unavailable")
|
117 |
+
print(" - Firewall blocking IMAP port 993")
|
118 |
raise
|
119 |
|
120 |
def _email_to_clean_text(msg):
|
|
|
334 |
print(f"Email scraping failed: {e}")
|
335 |
raise
|
336 |
|
337 |
+
def scrape_emails_by_text_search(keyword: str, start_date: str, end_date: str) -> List[Dict]:
|
338 |
+
"""
|
339 |
+
Scrape emails containing a specific keyword (like company name) within date range.
|
340 |
+
Uses IMAP text search to find emails from senders containing the keyword.
|
341 |
+
"""
|
342 |
+
print(f"Searching emails containing '{keyword}' between {start_date} and {end_date}")
|
343 |
+
|
344 |
+
# Validate setup first
|
345 |
+
if not validate_email_setup():
|
346 |
+
raise Exception("Email setup validation failed. Please check your .env file and credentials.")
|
347 |
+
|
348 |
+
try:
|
349 |
+
mail = _imap_connect()
|
350 |
+
|
351 |
+
# Prepare IMAP search criteria with text search
|
352 |
+
start_imap = _date_to_imap_format(start_date)
|
353 |
+
# Add one day to end_date for BEFORE criteria (IMAP BEFORE is exclusive)
|
354 |
+
end_dt = datetime.strptime(end_date, "%d-%b-%Y") + timedelta(days=1)
|
355 |
+
end_imap = end_dt.strftime("%d-%b-%Y")
|
356 |
+
|
357 |
+
# Search for emails containing the keyword in FROM field or SUBJECT or BODY
|
358 |
+
# We'll search multiple criteria and combine results
|
359 |
+
search_criteria_list = [
|
360 |
+
f'FROM "{keyword}" SINCE "{start_imap}" BEFORE "{end_imap}"',
|
361 |
+
f'SUBJECT "{keyword}" SINCE "{start_imap}" BEFORE "{end_imap}"',
|
362 |
+
f'BODY "{keyword}" SINCE "{start_imap}" BEFORE "{end_imap}"'
|
363 |
+
]
|
364 |
+
|
365 |
+
all_email_ids = set()
|
366 |
+
|
367 |
+
# Search with multiple criteria to catch emails containing the keyword
|
368 |
+
for search_criteria in search_criteria_list:
|
369 |
+
try:
|
370 |
+
print(f"IMAP search: {search_criteria}")
|
371 |
+
status, data = mail.search(None, search_criteria)
|
372 |
+
if status == 'OK' and data[0]:
|
373 |
+
email_ids = data[0].split()
|
374 |
+
all_email_ids.update(email_ids)
|
375 |
+
print(f"Found {len(email_ids)} emails with this criteria")
|
376 |
+
except Exception as e:
|
377 |
+
print(f"Search criteria failed: {search_criteria}, error: {e}")
|
378 |
+
continue
|
379 |
+
|
380 |
+
print(f"Total unique emails found: {len(all_email_ids)}")
|
381 |
+
scraped_emails = []
|
382 |
+
|
383 |
+
# Process each email
|
384 |
+
for i, email_id in enumerate(all_email_ids):
|
385 |
+
try:
|
386 |
+
print(f"Processing email {i+1}/{len(all_email_ids)}")
|
387 |
+
|
388 |
+
# Fetch email
|
389 |
+
status, msg_data = mail.fetch(email_id, "(RFC822)")
|
390 |
+
if status != 'OK':
|
391 |
+
continue
|
392 |
+
|
393 |
+
# Parse email
|
394 |
+
msg = message_from_bytes(msg_data[0][1])
|
395 |
+
|
396 |
+
# Extract information
|
397 |
+
subject = msg.get("Subject", "No Subject")
|
398 |
+
from_header = msg.get("From", "Unknown Sender")
|
399 |
+
content = _email_to_clean_text(msg)
|
400 |
+
|
401 |
+
# Check if the keyword is actually present (case-insensitive)
|
402 |
+
keyword_lower = keyword.lower()
|
403 |
+
if not any(keyword_lower in text.lower() for text in [subject, from_header, content]):
|
404 |
+
continue
|
405 |
+
|
406 |
+
# Parse date
|
407 |
+
date_header = msg.get("Date", "")
|
408 |
+
if date_header:
|
409 |
+
try:
|
410 |
+
dt_obj = parsedate_to_datetime(date_header)
|
411 |
+
# Convert to IST
|
412 |
+
ist_dt = dt_obj.astimezone(ZoneInfo("Asia/Kolkata"))
|
413 |
+
email_date = ist_dt.strftime("%d-%b-%Y")
|
414 |
+
email_time = ist_dt.strftime("%H:%M:%S")
|
415 |
+
except:
|
416 |
+
email_date = datetime.today().strftime("%d-%b-%Y")
|
417 |
+
email_time = "00:00:00"
|
418 |
+
else:
|
419 |
+
email_date = datetime.today().strftime("%d-%b-%Y")
|
420 |
+
email_time = "00:00:00"
|
421 |
+
|
422 |
+
# Double-check date range
|
423 |
+
if not _is_date_in_range(email_date, start_date, end_date):
|
424 |
+
continue
|
425 |
+
|
426 |
+
# Get message ID for deduplication
|
427 |
+
message_id = msg.get("Message-ID", f"missing-{email_id.decode()}")
|
428 |
+
|
429 |
+
scraped_emails.append({
|
430 |
+
"date": email_date,
|
431 |
+
"time": email_time,
|
432 |
+
"subject": subject,
|
433 |
+
"from": from_header,
|
434 |
+
"content": content[:2000], # Limit content length
|
435 |
+
"message_id": message_id
|
436 |
+
})
|
437 |
+
|
438 |
+
except Exception as e:
|
439 |
+
print(f"Error processing email {email_id}: {e}")
|
440 |
+
continue
|
441 |
+
|
442 |
+
mail.logout()
|
443 |
+
|
444 |
+
# Sort by date (newest first)
|
445 |
+
scraped_emails.sort(key=lambda x: datetime.strptime(f"{x['date']} {x['time']}", "%d-%b-%Y %H:%M:%S"), reverse=True)
|
446 |
+
|
447 |
+
print(f"Successfully processed {len(scraped_emails)} emails containing '{keyword}'")
|
448 |
+
return scraped_emails
|
449 |
+
|
450 |
+
except Exception as e:
|
451 |
+
print(f"Email text search failed: {e}")
|
452 |
+
raise
|
453 |
+
|
454 |
# Test the scraper
|
455 |
if __name__ == "__main__":
|
456 |
# Test scraping
|
agentic_implementation/name_mapping.json
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
{
|
2 |
-
"dev agarwal": "[email protected]"
|
|
|
3 |
}
|
|
|
1 |
{
|
2 |
+
"dev agarwal": "[email protected]",
|
3 |
+
"axis bank": "[email protected]"
|
4 |
}
|
agentic_implementation/re_act.py
CHANGED
@@ -26,7 +26,7 @@ NAME_MAPPING_FILE = "name_mapping.json"
|
|
26 |
SYSTEM_PLAN_PROMPT = """
|
27 |
You are an email assistant agent. You have access to the following actions:
|
28 |
|
29 |
-
• fetch_emails - fetch emails
|
30 |
• show_email - display specific email content
|
31 |
• analyze_emails - analyze email patterns or content
|
32 |
• draft_reply - create a reply to an email
|
@@ -44,11 +44,11 @@ When the user gives you a query, output _only_ valid JSON of this form:
|
|
44 |
}
|
45 |
|
46 |
Rules:
|
47 |
-
- Use "fetch_emails"
|
48 |
- The final entry _must_ be "done"
|
49 |
- If no tool is needed, return `{"plan":["done"]}`
|
50 |
|
51 |
-
Example: For "show me emails from
|
52 |
"""
|
53 |
|
54 |
SYSTEM_VALIDATOR_TEMPLATE = """
|
@@ -182,31 +182,15 @@ def think(
|
|
182 |
) -> Tuple[bool, Optional[PlanStep], Optional[str]]:
|
183 |
"""
|
184 |
Fill in parameters or skip based on the action:
|
185 |
-
- fetch_emails:
|
186 |
- others: ask the LLM validator for params
|
187 |
|
188 |
Returns: (should_execute, updated_step, user_prompt_if_needed)
|
189 |
"""
|
190 |
-
# 1) fetch_emails →
|
191 |
if step.action == "fetch_emails":
|
192 |
-
# Extract sender using LLM
|
193 |
-
sender_info = extract_sender_info(user_query)
|
194 |
-
sender_intent = sender_info.get("sender_intent", "")
|
195 |
-
|
196 |
-
if not sender_intent:
|
197 |
-
return False, None, None
|
198 |
-
|
199 |
-
# Resolve sender to email address
|
200 |
-
email_address, needs_input = resolve_sender_email(sender_intent)
|
201 |
-
|
202 |
-
if needs_input:
|
203 |
-
# Need user input for email address
|
204 |
-
prompt_msg = f"I don't have an email address for '{sender_intent}'. Please provide the email address:"
|
205 |
-
return False, None, prompt_msg
|
206 |
-
|
207 |
params = FetchEmailsParams(
|
208 |
-
|
209 |
-
query=user_query # Pass the full query for date extraction
|
210 |
)
|
211 |
return True, PlanStep(action="fetch_emails", parameters=params), None
|
212 |
|
|
|
26 |
SYSTEM_PLAN_PROMPT = """
|
27 |
You are an email assistant agent. You have access to the following actions:
|
28 |
|
29 |
+
• fetch_emails - fetch emails using text search with sender keywords and date extraction (e.g., "swiggy emails last week")
|
30 |
• show_email - display specific email content
|
31 |
• analyze_emails - analyze email patterns or content
|
32 |
• draft_reply - create a reply to an email
|
|
|
44 |
}
|
45 |
|
46 |
Rules:
|
47 |
+
- Use "fetch_emails" for text-based email search (automatically extracts sender keywords and dates)
|
48 |
- The final entry _must_ be "done"
|
49 |
- If no tool is needed, return `{"plan":["done"]}`
|
50 |
|
51 |
+
Example: For "show me emails from swiggy today" → ["fetch_emails", "done"]
|
52 |
"""
|
53 |
|
54 |
SYSTEM_VALIDATOR_TEMPLATE = """
|
|
|
182 |
) -> Tuple[bool, Optional[PlanStep], Optional[str]]:
|
183 |
"""
|
184 |
Fill in parameters or skip based on the action:
|
185 |
+
- fetch_emails: pass the raw query for text-based search and date extraction
|
186 |
- others: ask the LLM validator for params
|
187 |
|
188 |
Returns: (should_execute, updated_step, user_prompt_if_needed)
|
189 |
"""
|
190 |
+
# 1) fetch_emails → pass the full query for text-based search and date extraction
|
191 |
if step.action == "fetch_emails":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
params = FetchEmailsParams(
|
193 |
+
query=user_query # Pass the full query for keyword and date extraction
|
|
|
194 |
)
|
195 |
return True, PlanStep(action="fetch_emails", parameters=params), None
|
196 |
|
agentic_implementation/schemas.py
CHANGED
@@ -6,8 +6,7 @@ from typing import List, Literal, Optional, Union
|
|
6 |
|
7 |
|
8 |
class FetchEmailsParams(BaseModel):
|
9 |
-
|
10 |
-
query: str # Changed from start_date/end_date to query for internal date extraction
|
11 |
|
12 |
|
13 |
class ShowEmailParams(BaseModel):
|
|
|
6 |
|
7 |
|
8 |
class FetchEmailsParams(BaseModel):
|
9 |
+
query: str # Natural language query with sender and date info (e.g., "show me mails for last week from swiggy")
|
|
|
10 |
|
11 |
|
12 |
class ShowEmailParams(BaseModel):
|
agentic_implementation/tools.py
CHANGED
@@ -6,8 +6,8 @@ from schemas import (
|
|
6 |
SendReplyParams,
|
7 |
)
|
8 |
from typing import Any, Dict
|
9 |
-
from email_scraper import scrape_emails_from_sender, _load_email_db, _save_email_db, _is_date_in_range
|
10 |
-
from datetime import datetime
|
11 |
from typing import List
|
12 |
from openai import OpenAI
|
13 |
import json
|
@@ -22,40 +22,48 @@ OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
22 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
23 |
|
24 |
|
25 |
-
def
|
26 |
"""
|
27 |
-
Use an LLM to extract
|
28 |
-
Returns {"start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
|
29 |
"""
|
30 |
today_str = datetime.today().strftime("%d-%b-%Y")
|
|
|
|
|
31 |
system_prompt = f"""
|
32 |
-
You are a
|
33 |
-
|
34 |
-
Given a user query
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
- "
|
|
|
|
|
|
|
|
|
46 |
|
47 |
Examples:
|
48 |
-
- "
|
49 |
-
→ {{ "start_date": "01-Jun-2025", "end_date": "{today_str}"
|
50 |
-
- "
|
51 |
-
→ {{ "start_date": "06-Jun-2025", "end_date": "06-Jun-2025"
|
|
|
|
|
52 |
|
53 |
Return _only_ the JSON object—no extra text.
|
54 |
"""
|
55 |
|
56 |
messages = [
|
57 |
-
{"role": "system",
|
58 |
-
{"role": "user",
|
59 |
]
|
60 |
resp = client.chat.completions.create(
|
61 |
model="gpt-4o-mini",
|
@@ -73,31 +81,58 @@ Return _only_ the JSON object—no extra text.
|
|
73 |
return json.loads(content[start:end])
|
74 |
|
75 |
|
76 |
-
def fetch_emails(
|
77 |
"""
|
78 |
-
Fetch emails
|
79 |
-
Now returns
|
80 |
|
81 |
Args:
|
82 |
-
|
83 |
-
query: The original user query (for date extraction)
|
84 |
|
85 |
Returns:
|
86 |
-
Dict with
|
87 |
"""
|
88 |
-
# Extract date range from query
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
return {
|
98 |
-
"
|
99 |
-
"
|
100 |
-
"
|
|
|
101 |
}
|
102 |
|
103 |
|
@@ -141,18 +176,34 @@ def analyze_emails(emails: List[Dict]) -> Dict:
|
|
141 |
"insights": [str, ...] # list of key observations or stats
|
142 |
}
|
143 |
"""
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
# 2) Build the LLM prompt
|
148 |
system_prompt = """
|
149 |
You are an expert email analyst. You will be given a JSON array of email objects,
|
150 |
-
each with keys: date, time, subject,
|
151 |
|
152 |
Your job is to produce _only_ valid JSON with two fields:
|
153 |
1. summary: a 1–2 sentence high-level overview of these emails.
|
154 |
2. insights: a list of 3–5 bullet-style observations or statistics
|
155 |
-
(e.g. "
|
|
|
|
|
156 |
|
157 |
Output exactly:
|
158 |
|
|
|
6 |
SendReplyParams,
|
7 |
)
|
8 |
from typing import Any, Dict
|
9 |
+
from email_scraper import scrape_emails_from_sender, scrape_emails_by_text_search, _load_email_db, _save_email_db, _is_date_in_range
|
10 |
+
from datetime import datetime, timedelta
|
11 |
from typing import List
|
12 |
from openai import OpenAI
|
13 |
import json
|
|
|
22 |
client = OpenAI(api_key=OPENAI_API_KEY)
|
23 |
|
24 |
|
25 |
+
def extract_query_info(query: str) -> Dict[str, str]:
|
26 |
"""
|
27 |
+
Use an LLM to extract sender information and date range from a user query.
|
28 |
+
Returns {"sender_keyword": "company/sender name", "start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}.
|
29 |
"""
|
30 |
today_str = datetime.today().strftime("%d-%b-%Y")
|
31 |
+
five_days_ago = (datetime.today() - timedelta(days=5)).strftime("%d-%b-%Y")
|
32 |
+
|
33 |
system_prompt = f"""
|
34 |
+
You are a query parser for email search. Today is {today_str}.
|
35 |
+
|
36 |
+
Given a user query, extract the sender/company keyword and date range. Return _only_ valid JSON with:
|
37 |
+
{{
|
38 |
+
"sender_keyword": "keyword or company name to search for",
|
39 |
+
"start_date": "DD-MMM-YYYY",
|
40 |
+
"end_date": "DD-MMM-YYYY"
|
41 |
+
}}
|
42 |
+
|
43 |
+
Rules:
|
44 |
+
1. Extract sender keywords from phrases like "from swiggy", "swiggy emails", "mails from amazon", etc.
|
45 |
+
2. If no time is mentioned, use last 5 days: {five_days_ago} to {today_str}
|
46 |
+
3. Interpret relative dates as:
|
47 |
+
- "today" → {today_str} to {today_str}
|
48 |
+
- "yesterday" → 1 day ago to 1 day ago
|
49 |
+
- "last week" → 7 days ago to {today_str}
|
50 |
+
- "last month" → 30 days ago to {today_str}
|
51 |
+
- "last N days" → N days ago to {today_str}
|
52 |
|
53 |
Examples:
|
54 |
+
- "show me mails for last week from swiggy"
|
55 |
+
→ {{"sender_keyword": "swiggy", "start_date": "01-Jun-2025", "end_date": "{today_str}"}}
|
56 |
+
- "emails from amazon yesterday"
|
57 |
+
→ {{"sender_keyword": "amazon", "start_date": "06-Jun-2025", "end_date": "06-Jun-2025"}}
|
58 |
+
- "show flipkart emails"
|
59 |
+
→ {{"sender_keyword": "flipkart", "start_date": "{five_days_ago}", "end_date": "{today_str}"}}
|
60 |
|
61 |
Return _only_ the JSON object—no extra text.
|
62 |
"""
|
63 |
|
64 |
messages = [
|
65 |
+
{"role": "system", "content": system_prompt},
|
66 |
+
{"role": "user", "content": query}
|
67 |
]
|
68 |
resp = client.chat.completions.create(
|
69 |
model="gpt-4o-mini",
|
|
|
81 |
return json.loads(content[start:end])
|
82 |
|
83 |
|
84 |
+
def fetch_emails(query: str) -> Dict:
|
85 |
"""
|
86 |
+
Fetch emails based on a natural language query that contains sender information and date range.
|
87 |
+
Now uses text-based search and returns only summary information, not full content.
|
88 |
|
89 |
Args:
|
90 |
+
query: The natural language query (e.g., "show me mails for last week from swiggy")
|
|
|
91 |
|
92 |
Returns:
|
93 |
+
Dict with query_info, email_summary, analysis, and email_count
|
94 |
"""
|
95 |
+
# Extract sender keyword and date range from query
|
96 |
+
query_info = extract_query_info(query)
|
97 |
+
sender_keyword = query_info.get("sender_keyword", "")
|
98 |
+
start_date = query_info.get("start_date")
|
99 |
+
end_date = query_info.get("end_date")
|
100 |
+
|
101 |
+
print(f"Searching for emails with keyword '{sender_keyword}' between {start_date} and {end_date}")
|
102 |
+
|
103 |
+
# Use the new text-based search function
|
104 |
+
full_emails = scrape_emails_by_text_search(sender_keyword, start_date, end_date)
|
105 |
|
106 |
+
if not full_emails:
|
107 |
+
return {
|
108 |
+
"query_info": query_info,
|
109 |
+
"email_summary": [],
|
110 |
+
"analysis": {"summary": f"No emails found for '{sender_keyword}' in the specified date range.", "insights": []},
|
111 |
+
"email_count": 0
|
112 |
+
}
|
113 |
|
114 |
+
# Create summary version without full content
|
115 |
+
email_summary = []
|
116 |
+
for email in full_emails:
|
117 |
+
summary_email = {
|
118 |
+
"date": email.get("date"),
|
119 |
+
"time": email.get("time"),
|
120 |
+
"subject": email.get("subject"),
|
121 |
+
"from": email.get("from", "Unknown Sender"),
|
122 |
+
"message_id": email.get("message_id")
|
123 |
+
# Note: Removed 'content' to keep response clean
|
124 |
+
}
|
125 |
+
email_summary.append(summary_email)
|
126 |
+
|
127 |
+
# Auto-analyze the emails for insights
|
128 |
+
analysis = analyze_emails(full_emails) # Use full emails for analysis but don't return them
|
129 |
+
|
130 |
+
# Return summary info with analysis
|
131 |
return {
|
132 |
+
"query_info": query_info,
|
133 |
+
"email_summary": email_summary,
|
134 |
+
"analysis": analysis,
|
135 |
+
"email_count": len(full_emails)
|
136 |
}
|
137 |
|
138 |
|
|
|
176 |
"insights": [str, ...] # list of key observations or stats
|
177 |
}
|
178 |
"""
|
179 |
+
if not emails:
|
180 |
+
return {"summary": "No emails to analyze.", "insights": []}
|
181 |
+
|
182 |
+
# 1) Create a simplified email summary for analysis (without full content)
|
183 |
+
simplified_emails = []
|
184 |
+
for email in emails:
|
185 |
+
simplified_email = {
|
186 |
+
"date": email.get("date"),
|
187 |
+
"time": email.get("time"),
|
188 |
+
"subject": email.get("subject"),
|
189 |
+
"from": email.get("from", "Unknown Sender"),
|
190 |
+
"content_preview": email.get("content", "")[:200] + "..." if email.get("content") else ""
|
191 |
+
}
|
192 |
+
simplified_emails.append(simplified_email)
|
193 |
+
|
194 |
+
emails_payload = json.dumps(simplified_emails, ensure_ascii=False)
|
195 |
|
196 |
# 2) Build the LLM prompt
|
197 |
system_prompt = """
|
198 |
You are an expert email analyst. You will be given a JSON array of email objects,
|
199 |
+
each with keys: date, time, subject, from, content_preview.
|
200 |
|
201 |
Your job is to produce _only_ valid JSON with two fields:
|
202 |
1. summary: a 1–2 sentence high-level overview of these emails.
|
203 |
2. insights: a list of 3–5 bullet-style observations or statistics
|
204 |
+
(e.g. "5 emails from Swiggy", "mostly promotional content", "received over 3 days").
|
205 |
+
|
206 |
+
Focus on metadata like senders, subjects, dates, and patterns rather than detailed content analysis.
|
207 |
|
208 |
Output exactly:
|
209 |
|