from schemas import ( FetchEmailsParams, ShowEmailParams, AnalyzeEmailsParams, DraftReplyParams, SendReplyParams, ) from typing import Any, Dict from email_scraper import scrape_emails_by_text_search, _load_email_db, _save_email_db, _is_date_in_range from datetime import datetime, timedelta from typing import List from openai import OpenAI import json from dotenv import load_dotenv import os # Load environment variables from .env file load_dotenv() # Initialize OpenAI client OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def extract_query_info(query: str) -> Dict[str, str]: """ Use an LLM to extract sender information and date range from a user query. Returns {"sender_keyword": "company/sender name", "start_date":"DD-MMM-YYYY","end_date":"DD-MMM-YYYY"}. """ today_str = datetime.today().strftime("%d-%b-%Y") five_days_ago = (datetime.today() - timedelta(days=5)).strftime("%d-%b-%Y") system_prompt = f""" You are a query parser for email search. Today is {today_str}. Given a user query, extract the sender/company keyword and date range. Return _only_ valid JSON with: {{ "sender_keyword": "keyword or company name to search for", "start_date": "DD-MMM-YYYY", "end_date": "DD-MMM-YYYY" }} Rules: 1. Extract sender keywords from phrases like "from swiggy", "swiggy emails", "mails from amazon", etc. 2. If no time is mentioned, use last 5 days: {five_days_ago} to {today_str} 3. Interpret relative dates as: - "today" → {today_str} to {today_str} - "yesterday" → 1 day ago to 1 day ago - "last week" → 7 days ago to {today_str} - "last month" → 30 days ago to {today_str} - "last N days" → N days ago to {today_str} Examples: - "show me mails for last week from swiggy" → {{"sender_keyword": "swiggy", "start_date": "01-Jun-2025", "end_date": "{today_str}"}} - "emails from amazon yesterday" → {{"sender_keyword": "amazon", "start_date": "06-Jun-2025", "end_date": "06-Jun-2025"}} - "show flipkart emails" → {{"sender_keyword": "flipkart", "start_date": "{five_days_ago}", "end_date": "{today_str}"}} Return _only_ the JSON object—no extra text. """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": query} ] resp = client.chat.completions.create( model="gpt-4o-mini", temperature=0.0, messages=messages ) content = resp.choices[0].message.content.strip() # Try direct parse; if the model added fluff, strip to the JSON block. try: return json.loads(content) except json.JSONDecodeError: start = content.find("{") end = content.rfind("}") + 1 return json.loads(content[start:end]) def fetch_emails(query: str) -> Dict: """ Fetch emails based on a natural language query that contains sender information and date range. Now uses text-based search and returns only summary information, not full content. Args: query: The natural language query (e.g., "show me mails for last week from swiggy") Returns: Dict with query_info, email_summary, analysis, and email_count """ # Extract sender keyword and date range from query query_info = extract_query_info(query) sender_keyword = query_info.get("sender_keyword", "") start_date = query_info.get("start_date") end_date = query_info.get("end_date") print(f"Searching for emails with keyword '{sender_keyword}' between {start_date} and {end_date}") # Use the new text-based search function full_emails = scrape_emails_by_text_search(sender_keyword, start_date, end_date) if not full_emails: return { "query_info": query_info, "email_summary": [], "analysis": {"summary": f"No emails found for '{sender_keyword}' in the specified date range.", "insights": []}, "email_count": 0 } # Create summary version without full content email_summary = [] for email in full_emails: summary_email = { "date": email.get("date"), "time": email.get("time"), "subject": email.get("subject"), "from": email.get("from", "Unknown Sender"), "message_id": email.get("message_id") # Note: Removed 'content' to keep response clean } email_summary.append(summary_email) # Auto-analyze the emails for insights analysis = analyze_emails(full_emails) # Use full emails for analysis but don't return them # Return summary info with analysis return { "query_info": query_info, "email_summary": email_summary, "analysis": analysis, "email_count": len(full_emails) } def show_email(message_id: str) -> Dict: """ Retrieve the full email record (date, time, subject, content, etc.) from the local cache by message_id. """ db = _load_email_db() # returns { sender_email: { "emails": [...], "last_scraped": ... }, ... } # Search each sender's email list for sender_data in db.values(): for email in sender_data.get("emails", []): if email.get("message_id") == message_id: return email # If we didn't find it, raise or return an error structure raise ValueError(f"No email found with message_id '{message_id}'") def draft_reply(email: Dict, tone: str) -> str: # call LLM to generate reply # return a dummy reply for now print(f"Drafting reply for email {email['id']} with tone: {tone}") return f"Drafted reply for email {email['id']} with tone {tone}." ... def send_reply(message_id: str, reply_body: str) -> Dict: # SMTP / Gmail API send print(f"Sending reply to message {message_id} with body: {reply_body}") ... def analyze_emails(emails: List[Dict]) -> Dict: """ Summarize and extract insights from a list of emails. Returns a dict with this schema: { "summary": str, # a concise overview of all emails "insights": [str, ...] # list of key observations or stats } """ if not emails: return {"summary": "No emails to analyze.", "insights": []} # 1) Create a simplified email summary for analysis (without full content) simplified_emails = [] for email in emails: simplified_email = { "date": email.get("date"), "time": email.get("time"), "subject": email.get("subject"), "from": email.get("from", "Unknown Sender"), "content_preview": email.get("content", "")[:200] + "..." if email.get("content") else "" } simplified_emails.append(simplified_email) emails_payload = json.dumps(simplified_emails, ensure_ascii=False) # 2) Build the LLM prompt system_prompt = """ You are an expert email analyst. You will be given a JSON array of email objects, each with keys: date, time, subject, from, content_preview. Your job is to produce _only_ valid JSON with two fields: 1. summary: a 1–2 sentence high-level overview of these emails. 2. insights: a list of 3–5 bullet-style observations or statistics (e.g. "5 emails from Swiggy", "mostly promotional content", "received over 3 days"). Focus on metadata like senders, subjects, dates, and patterns rather than detailed content analysis. Output exactly: { "summary": "...", "insights": ["...", "...", ...] } """ messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"Here are the emails:\n{emails_payload}"} ] # 3) Call the LLM response = client.chat.completions.create( model="gpt-4o-mini", temperature=0.0, messages=messages ) # 4) Parse and return content = response.choices[0].message.content.strip() try: return json.loads(content) except json.JSONDecodeError: # In case the model outputs extra text, extract the JSON block start = content.find('{') end = content.rfind('}') + 1 return json.loads(content[start:end]) TOOL_MAPPING = { "fetch_emails": fetch_emails, "show_email": show_email, "analyze_emails": analyze_emails, "draft_reply": draft_reply, "send_reply": send_reply, }