File size: 35,454 Bytes
76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 9f3e682 76c4686 e15a7b0 76c4686 0b64b37 76c4686 9f3e682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
import gradio as gr
import pandas as pd
from openai import OpenAI
from pydantic import BaseModel
import os
import logging
import time
import json
import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pycountry
from collections import Counter
from types import SimpleNamespace
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
# --- Pydantic Data Models ---
class PatentRating(BaseModel):
"""Details the evaluation criteria for a patent on a scale of 1 to 10."""
novelty: int
inventive_step: int
utility: int
completeness: int
clarity: int
class Patent(BaseModel):
"""Represents the details of a relevant existing patent."""
id: str
title: str
company_name: str
date: str
country: str
relevance: str
class PatentExtraction(BaseModel):
"""Structures the final patentability analysis result."""
strengths: list[str]
weaknesses: list[str]
patent_rating: PatentRating
relevant_patents: list[Patent]
class RewrittenQuery(BaseModel):
"""Represents the product description, rewritten to be more formal."""
product_description: str
# --- Radar Chart Functions ---
def get_pleasant_color_for_value(value, alpha=0.7):
"""
Maps a value from 0-10 to a colour.
- 0 is a soft coral red
- 5 is a warm yellow
- 10 is a calming teal green
"""
red_color = np.array([239, 83, 80])
yellow_color = np.array([253, 216, 53])
green_color = np.array([38, 166, 154])
# Interpolate colours.
if value < 5:
ratio = value / 5
color = red_color + ratio * (yellow_color - red_color)
else:
ratio = (value - 5) / 5
color = yellow_color + ratio * (green_color - yellow_color)
return f'rgba({int(color[0])}, {int(color[1])}, {int(color[2])}, {alpha})'
def create_radar_plot(patent_rating: PatentRating):
"""
Creates and returns a Plotly radar plot with the fill color
based on the average of the radial values.
"""
# Extract values from PatentRating object
r_values = [
patent_rating.novelty,
patent_rating.inventive_step,
patent_rating.utility,
patent_rating.completeness,
patent_rating.clarity
]
theta_categories = ['Novelty', 'Inventive Step', 'Utility', 'Completeness', 'Clarity']
# Close area loop
plot_r = r_values + [r_values[0]]
plot_theta = theta_categories + [theta_categories[0]]
# Use average value for area colour.
average_value = np.mean(r_values)
fill_color = get_pleasant_color_for_value(average_value)
# Create the radar plot figure
fig = go.Figure(data=go.Scatterpolar(
r=plot_r,
theta=plot_theta,
fill='toself',
fillcolor=fill_color,
line=dict(color='rgba(0, 0, 0, 0)')
))
# Update the layout of the plot
fig.update_layout(
template='plotly_white',
polar=dict(
radialaxis=dict(
layer='below traces',
visible=True,
range=[0, 10],
showticklabels=False,
ticks=''
),
angularaxis=dict(
tickfont=dict(size=14)
),
domain=dict(x=[0.1, 0.9], y=[0.1, 0.9])
),
showlegend=False,
# Show the average value as a large, bold annotation in the center
annotations=[
go.layout.Annotation(
text=f'<b>{average_value:.1f}</b>',
x=0.5,
y=0.5,
xref='paper',
yref='paper',
showarrow=False,
font=dict(
size=36,
color="#333333"
)
)
],
title=f'Patent Strength Score: {average_value:.2f}/10',
font=dict(size=12),
margin=dict(l=40, r=40, t=60, b=40),
height=450,
autosize=True
)
return fig
# --- Map Functions ---
def generate_country_map(patents_data):
"""
Generates a world map showing the frequency of countries from patent data.
Args:
patents_data: List of patent dictionaries with 'country' field
Returns:
A Plotly figure object.
"""
if not patents_data:
# Create empty map if no data
fig = px.scatter_geo(
[],
projection="orthographic",
)
fig.update_layout(
title="No patents found",
title_x=0.5,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
)
fig.update_geos(
bgcolor='rgba(0,0,0,0)',
showocean=True,
oceancolor="lightblue",
lakecolor="lightblue"
)
return fig
# Extract country codes from patents
country_codes = [patent.get('country', '').strip().upper() for patent in patents_data if patent.get('country')]
country_counts = Counter(country_codes)
# Mapping for special patent codes
special_patent_codes = {
'EP': {'name': 'European Union (EP)', 'iso3': 'EUR', 'lat': 50.8503, 'lon': 4.3517}, # Brussels
'WO': {'name': 'World Organization (WO)', 'iso3': 'CHE', 'lat': 46.5197, 'lon': 6.6323}, # Geneva
'PCT': {'name': 'PCT Treaty', 'iso3': 'CHE', 'lat': 46.5197, 'lon': 6.6323}, # Geneva
}
map_data = []
invalid_codes = set()
for code, count in country_counts.items():
# Check if it's a special patent code first
if code in special_patent_codes:
special = special_patent_codes[code]
map_data.append({
"iso_alpha": special['iso3'],
"country_name": special['name'],
"count": count,
"code_2": code,
"lat": special['lat'],
"lon": special['lon'],
"is_special": True
})
else:
# Try standard country codes
try:
country = pycountry.countries.get(alpha_2=code)
if country:
map_data.append({
"iso_alpha": country.alpha_3,
"country_name": country.name,
"count": count,
"code_2": code,
"is_special": False
})
else:
invalid_codes.add(code)
except (AttributeError, LookupError):
invalid_codes.add(code)
if not map_data:
# Create empty map if no valid countries
fig = px.scatter_geo(
[],
projection="orthographic",
)
fig.update_layout(
title="No valid countries found",
title_x=0.5,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
)
fig.update_geos(
bgcolor='rgba(0,0,0,0)',
showocean=True,
oceancolor="lightblue",
lakecolor="lightblue"
)
return fig
# Separate regular countries and special patent locations
regular_data = [d for d in map_data if not d.get('is_special', False)]
special_data = [d for d in map_data if d.get('is_special', False)]
fig = px.scatter_geo(
regular_data,
locations="iso_alpha",
size="count",
hover_name="country_name",
custom_data=["count", "code_2"],
projection="orthographic",
)
# Add special patent locations with lat/lon
if special_data:
fig.add_trace(px.scatter_geo(
special_data,
lat="lat",
lon="lon",
size="count",
hover_name="country_name",
custom_data=["count", "code_2"],
).data[0])
# Change colour to preference.
fig.update_traces(
marker=dict(color='red'),
hovertemplate="<b>%{hovertext}</b><br>Patents: %{customdata[0]}<extra></extra>"
)
fig.update_layout(
title="Geographical distribution of similar patents",
title_x=0.5,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
margin=dict(l=0, r=0, t=40, b=0),
height=500
)
# Change colour of sea
fig.update_geos(
bgcolor='rgba(0,0,0,0)',
showocean=True,
oceancolor="lightblue",
lakecolor="lightblue"
)
return fig
# --- Business Logic ---
def read_text_file(filepath: str) -> str:
"""Reads the content of a text file."""
try:
with open(filepath, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logging.error(f"Error reading file {filepath}: {e}")
raise
def initialize_client() -> OpenAI:
"""Initializes the OpenAI client."""
return OpenAI()
# Load prompt templates at startup
try:
script_dir = os.path.dirname(os.path.abspath(__file__))
query_prompt_template = read_text_file(os.path.join(script_dir, "prompts", "rewrite_description_prompt_template.txt"))
mcp_prompt_template = read_text_file(os.path.join(script_dir, "prompts", "mcp_prompt_template.txt"))
except Exception as e:
print(f"CRITICAL ERROR: Could not load prompt files. Error: {e}")
query_prompt_template = "User description: {user_description}"
mcp_prompt_template = "Product description: {product_description}"
# --- Pre-calculated example data ---
EXAMPLE_RESULTS = {
"A coffee mug with a carbon handle that doesn't burn your hand and includes a cooling mechanism.": {
"rewritten_query": "An insulated coffee cup comprising a beverage-containing body with an integrated cooling mechanism and an ergonomically shaped carbon composite handle. The primary purpose of this product is to allow users to hold and drink hot beverages without discomfort or risk of burns, while simultaneously reducing the temperature of the liquid to an optimal drinking level. The cup body is constructed of a thermally stable material such as ceramic or stainless steel and features a double-walled structure that accommodates an internal cooling module within its walls. The carbon fiber handle is mechanically attached to the cup body and provides high thermal resistance, ensuring the handle remains at ambient temperature even when filled with boiling liquid. The cooling mechanism consists of a heat-absorbing element embedded between the inner and outer walls of the cup, designed to draw heat away from the beverage and dissipate it through the external surface without requiring external power. The cup operates by transferring heat from the liquid into the cooling element, maintaining the beverage at a drinkable temperature and preventing heat transfer to the handle. Unique features include the combination of a non-conductive carbon fiber handle with an integrated cooling chamber, distinguishing it from standard insulated cups. Alternate embodiments may vary cup volumes, shapes or placements of the cooling element, and materials for the cup body. The design is intended for consumer beverage use in domestic or office environments, targeting individuals who seek enhanced comfort and controlled beverage temperature.",
"strengths": [
"Integrated passive thermal management maintains optimal beverage temperature without external accessories",
"Carbon fiber composite handle ensures handle remains cool and ergonomically safe",
"Versatile choice of materials (ceramic, stainless steel, or high-performance plastic) and modular cooling elements allows adaptability to various user needs"
],
"weaknesses": [
"Increased manufacturing complexity and cost due to multilayer construction and specialized materials",
"Potential for sealing failures or leaks between walls, especially around handle junctions",
"Added weight from cooling elements or thermoelectric modules may reduce portability"
],
"rating": {"novelty": 6, "inventive_step": 5, "utility": 9, "completeness": 8, "clarity": 7},
"patents": [
{"id": "US20180012345A1", "title": "Thermal management beverage container", "company_name": "ThermoTech Inc.", "date": "2018-01-05", "country": "US", "relevance": "high"},
{"id": "US20170234567B2", "title": "Insulated drinking vessel with phase-change insert", "company_name": "CoolWare LLC", "date": "2017-08-10", "country": "US", "relevance": "high"},
{"id": "EP3045678A1", "title": "Drinkware with active thermoelectric element", "company_name": "HeatCool Corp.", "date": "2016-10-12", "country": "EP", "relevance": "low"},
{"id": "US20190123456A1", "title": "Double-walled mug with gel pack insert", "company_name": "BevCool Innovations", "date": "2019-03-15", "country": "US", "relevance": "high"},
{"id": "US20150234567A1", "title": "Nonconductive handle for hot beverage container", "company_name": "SafeHandle Co.", "date": "2015-06-20", "country": "US", "relevance": "low"}
]
},
"A real-time translation system for video calls, natively integrated without a third-party app.": {
"rewritten_query": "A real-time video call translation system is natively integrated into a video conferencing platform or device to eliminate language barriers without relying on third-party applications. The system captures incoming multilingual audio streams via built-in microphones and processes them through an onboard speech recognition engine that converts spoken words into text. This text is then transmitted to an embedded neural machine translation module, which supports multiple language pairs and employs adaptive algorithms to optimize translation accuracy in live scenarios. Translated text is rendered instantly as subtitles on the user's video feed or fed into a text-to-speech synthesis engine to generate voice output in the listener's preferred language. The system is architected as modular software components—audio capture, speech-to-text, translation, text-to-speech, and user interface—running on dedicated hardware accelerators or GPU resources within the host device. This pipeline operates with sub-second latency, maintaining audio-video synchronization and preserving speaker intonation and context cues. Innovative aspects include end-to-end native integration that minimizes data transfer delays and enhances privacy by keeping all processing local to the device or secured cloud infrastructure, as well as dynamic language model adaptation based on conversational context. Alternative embodiments allow for selective subtitle display, choice of synthesized voice profiles, and support for custom terminology databases. Applicable across corporate communications, telemedicine, online education, and global customer support, the system enables seamless multilingual interactions for professionals and consumers without additional software installations.",
"strengths": [
"Seamless integration into host video-calling platform without requiring third-party apps, reducing user friction.",
"Low-latency processing via local hardware acceleration or adaptive cloud offloading ensures real-time performance.",
"On-device processing and privacy controls protect sensitive conversations by minimizing cloud exposure."
],
"weaknesses": [
"Complexity of intercepting and synchronizing media streams across diverse platforms and OS versions.",
"Highly crowded patent landscape for real-time speech translation may pose freedom-to-operate risks.",
"Substantial computational and network resources required for multi-participant, multi-language scenarios could increase costs and affect scalability."
],
"rating": {"novelty": 6, "inventive_step": 5, "utility": 9, "completeness": 7, "clarity": 6},
"patents": [
{"id": "US20170246402A1", "title": "Real-time language translation in communication sessions", "company_name": "Microsoft Corporation", "date": "2017-08-31", "country": "US", "relevance": "high"},
{"id": "US20190061915A1", "title": "Real-time translation for video conferencing", "company_name": "Google LLC", "date": "2019-01-31", "country": "US", "relevance": "high"},
{"id": "EP2742371B1", "title": "Speech recognition and translation in mobile communications", "company_name": "Qualcomm Incorporated", "date": "2015-03-04", "country": "EP", "relevance": "high"},
{"id": "US20180345367A1", "title": "Dynamic bandwidth adaptation for streaming translated media", "company_name": "Cisco Technology, Inc.", "date": "2018-11-29", "country": "US", "relevance": "low"},
{"id": "US10570587B2", "title": "On-device neural network based speech translation", "company_name": "Apple Inc.", "date": "2019-02-26", "country": "US", "relevance": "low"}
]
},
"A biodegradable food packaging made from algae that dissolves in hot water.": {
"rewritten_query": "A biodegradable food packaging material composed of algae-derived polymers that forms a flexible, water-resistant film or container designed to dissolve entirely when immersed in hot water, addressing the need for single-use packaging alternatives that generate zero solid waste. The material is produced by extracting alginate from seaweed, optionally blending with natural plasticizers or cross-linking agents to achieve desired mechanical strength and barrier properties, then cast or extruded into sheets, pouches, cups, trays, or other container shapes. When used to package dry or moist foods, the algae-based film provides comparable protection against moisture and contaminants as conventional plastics, while remaining fully edible or safely water-soluble at temperatures above 50 °C. Upon disposal, users simply immerse the empty packaging in hot water, triggering rapid dissolution of the alginate matrix and leaving no microplastic residues. This contrasts with traditional compostable plastics that require industrial facilities; here, the unique solubility profile of the algae polymer enables on-site disposal in kitchens or restaurants. Variations include adjusting film thickness, blend ratios, or additives for tailored disintegration times and mechanical properties, as well as formats for solid foods, liquids, or multi-compartment trays. Intended for food service, retail grocery, and catering industries, this solution targets restaurants, supermarkets, and eco-conscious consumers seeking a fully circular, water-dissolvable packaging option.",
"strengths": [
"Provides fully water-soluble, zero‐waste packaging that dissolves on demand without microplastics",
"Utilizes abundant, renewable seaweed alginate, reducing reliance on petrochemical plastics",
"Customizable mechanical and dissolution properties via blend ratios and additives"
],
"weaknesses": [
"Maintaining sufficient mechanical strength and barrier performance under humid or heavy‐load conditions",
"Potential higher production cost and supply chain constraints for high‐purity alginate",
"Food‐contact safety and regulatory approval hurdles for novel edible packaging materials"
],
"rating": {"novelty": 7, "inventive_step": 6, "utility": 9, "completeness": 8, "clarity": 8},
"patents": [
{"id": "US20160123456A1", "title": "Biodegradable alginate-based film for packaging", "company_name": "AlgaTech Inc.", "date": "2016-05-12", "country": "US", "relevance": "high"},
{"id": "EP2869123B1", "title": "Water-soluble seaweed-based packaging material", "company_name": "SeaPack Ltd.", "date": "2018-03-07", "country": "EP", "relevance": "high"},
{"id": "WO2017134567A1", "title": "Edible film from brown seaweed", "company_name": "Lagarde & Co.", "date": "2017-09-21", "country": "WO", "relevance": "high"},
{"id": "CN105123456A", "title": "Preparation method for alginate blended biodegradable film", "company_name": "Shanghai Cosco", "date": "2015-11-18", "country": "CN", "relevance": "low"},
{"id": "US20190098765A1", "title": "Dissolvable packaging for hot liquid containers", "company_name": "GreenWare LLC", "date": "2019-04-22", "country": "US", "relevance": "low"}
]
}
}
def analyze_patent_idea(query: str):
"""
Analyzes a product idea to assess its patentability and finds similar patents.
This main function takes a textual description of an invention, reformulates it for technical clarity,
and then uses a tool to query a patent database. It returns a structured analysis
including strengths, weaknesses, a potential assessment, and a list of relevant patents.
Args:
query (str): A description of the idea or invention to be analyzed. Should be detailed enough to be understood. For example: "A coffee mug with a carbon handle that doesn't burn your hand".
Returns:
For LLMs/Agents: The final structured result is embedded as JSON in the last status message within an HTML comment.
Look for "<!-- LLM_RESULT: {...} -->" in the final yielded status to extract the complete analysis result.
The JSON contains: strengths (list), weaknesses (list), rating (dict), patents (list), rewritten_query (str), status (str).
For Gradio Interface: Complete analysis results for all UI components.
"""
if not query:
gr.Warning("Please enter a description of your idea.")
warning_result_for_llms = {
"error": "No query provided. Please enter a description of your idea.",
"status": "halted"
}
warning_status_with_data = f"❌ **Halted.** Please provide an idea description.\n\n<!-- LLM_RESULT: {json.dumps(warning_result_for_llms, ensure_ascii=False)} -->"
yield {
step1_status: gr.Markdown(warning_status_with_data),
step2_status: gr.Markdown(""),
step3_status: gr.Markdown(""),
rewritten_query_box: gr.Textbox(value="", visible=False),
strengths_output: gr.Markdown(value=""),
weaknesses_output: gr.Markdown(value=""),
rating_output: gr.Plot(value=None),
rating_df_output: gr.DataFrame(value=None),
patents_output: gr.DataFrame(value=None),
country_map_output: gr.Plot(value=None)
}
return
# Check if it's one of the predefined examples
logging.info(f"Checking if query is example: '{query.strip()}'")
logging.info(f"Available examples: {list(EXAMPLE_RESULTS.keys())}")
if query.strip() in EXAMPLE_RESULTS:
logging.info(f"✅ Using predefined example results for: {query[:50]}...")
example_data = EXAMPLE_RESULTS[query.strip()]
# Format results for display
strengths = "\n\n".join(f"✅ **{s.strip()}**" for s in example_data["strengths"])
weaknesses = "\n\n".join(f"❌ **{w.strip()}**" for w in example_data["weaknesses"])
# Create rating objects for plotting
rating_dict = example_data["rating"]
patent_rating = SimpleNamespace(**rating_dict)
# Create radar plot and DataFrame
radar_plot = create_radar_plot(patent_rating)
rating_df = pd.DataFrame(rating_dict.items(), columns=['Criterion', 'Score (out of 10)'])
patents_df = pd.DataFrame(example_data["patents"])
# Create country map
country_map = generate_country_map(example_data["patents"])
# Result for LLMs
final_result_for_llms = {
"strengths": example_data["strengths"],
"weaknesses": example_data["weaknesses"],
"rating": rating_dict,
"patents": example_data["patents"],
"rewritten_query": example_data["rewritten_query"],
"status": "completed_example"
}
final_status_with_data = f"✅ **Step 3:** Final Report Generation (Complete - Example)\n\n<!-- LLM_RESULT: {json.dumps(final_result_for_llms, ensure_ascii=False)} -->"
# Display instant example results
yield {
step1_status: gr.Markdown("✅ **Step 1:** Query Refinement (Complete - Example)"),
step2_status: gr.Markdown("✅ **Step 2:** MCP Patent Database Search (Complete - Example)"),
step3_status: gr.Markdown(final_status_with_data),
rewritten_query_box: gr.Textbox(value=example_data["rewritten_query"], visible=True),
strengths_output: gr.Markdown(strengths),
weaknesses_output: gr.Markdown(weaknesses),
rating_output: gr.Plot(value=radar_plot),
rating_df_output: gr.DataFrame(value=rating_df),
patents_output: gr.DataFrame(value=patents_df),
country_map_output: gr.Plot(value=country_map)
}
return
try:
client = initialize_client()
# --- 1. Rewrite the query -- -
logging.info("Rewriting query...")
query_prompt = query_prompt_template.format(user_description=query)
rewrite_response = client.responses.parse(
model="o3-mini", # model switch
input=[{"role": "user", "content": query_prompt}],
text_format=RewrittenQuery
)
rewritten_query = rewrite_response.output_parsed.product_description
logging.info("Query rewritten successfully.")
# --- 2. Extract patent information with MCP ---
logging.info("Extracting patent information with MCP...")
mcp_prompt = mcp_prompt_template.format(product_description=rewritten_query)
mcp_resp = client.responses.parse(
model="o4-mini",
tools=[{
"type": "mcp",
"server_label": "patentmcp",
"server_url": "https://bbfizp-patent-mcp.hf.space/gradio_api/mcp/sse",
"allowed_tools": [],
"require_approval": "never",
}],
input=mcp_prompt,
text_format=PatentExtraction
)
result = mcp_resp.output_parsed
logging.info("Extraction completed.")
# --- 3. Format results for display ---
strengths = "\n\n".join(f"✅ **{s.strip()}**" for s in result.strengths)
weaknesses = "\n\n".join(f"❌ **{w.strip()}**" for w in result.weaknesses)
# Create radar plot instead of DataFrame
radar_plot = create_radar_plot(result.patent_rating)
rating_df = pd.DataFrame(result.patent_rating.model_dump().items(), columns=['Criterion', 'Score (out of 10)'])
patents_df = pd.DataFrame([p.model_dump() for p in result.relevant_patents])
# Create country map from patents data
patents_data = [p.model_dump() for p in result.relevant_patents]
country_map = generate_country_map(patents_data)
# Structured result for LLMs (JSON format in the last yield)
final_result_for_llms = {
"strengths": result.strengths,
"weaknesses": result.weaknesses,
"rating": result.patent_rating.model_dump(),
"patents": [p.model_dump() for p in result.relevant_patents],
"rewritten_query": rewritten_query,
"status": "completed"
}
# Final statuses with data for LLMs
final_status_with_data = f"✅ **Step 3:** Final Report Generation (Complete)\n\n<!-- LLM_RESULT: {json.dumps(final_result_for_llms, ensure_ascii=False)} -->"
# Single final yield with all results
yield {
step1_status: gr.Markdown("✅ **Step 1:** Query Refinement (Complete)"),
step2_status: gr.Markdown("✅ **Step 2:** MCP Patent Database Search (Complete)"),
step3_status: gr.Markdown(final_status_with_data),
rewritten_query_box: gr.Textbox(value=rewritten_query, visible=True),
strengths_output: gr.Markdown(strengths),
weaknesses_output: gr.Markdown(weaknesses),
rating_output: gr.Plot(value=radar_plot),
rating_df_output: gr.DataFrame(value=rating_df),
patents_output: gr.DataFrame(value=patents_df),
country_map_output: gr.Plot(value=country_map)
}
except Exception as e:
error_message = f"An unexpected error occurred during the analysis: {str(e)}"
logging.error(error_message)
gr.Error(error_message)
error_result_for_llms = {
"error": error_message,
"status": "failed"
}
error_status_with_data = f"❌ **Analysis Failed!**\n\n<!-- LLM_RESULT: {json.dumps(error_result_for_llms, ensure_ascii=False)} -->"
yield {
step1_status: gr.Markdown(error_status_with_data),
step2_status: gr.Markdown(f"❌ An error occurred. Please check logs for details."),
step3_status: gr.Markdown(""),
rewritten_query_box: gr.Textbox(value="", visible=False),
strengths_output: gr.Markdown(value=""),
weaknesses_output: gr.Markdown(value=""),
rating_output: gr.Plot(value=None),
rating_df_output: gr.DataFrame(value=None),
patents_output: gr.DataFrame(value=None),
country_map_output: gr.Plot(value=None)
}
# --- Gradio Interface ---
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue"), title="AI Patent Analyzer") as app:
gr.Markdown(
"""
<div style="text-align: center; margin-bottom: 20px;">
<h1>🏆 AI Patent Analyzer 🏆</h1>
<p><strong>Transform your idea into a comprehensive patentability analysis.</strong></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 1. Describe Your Idea")
query_input = gr.Textbox(
label="Invention Description",
placeholder="E.g., A coffee mug with a carbon handle that doesn't burn your hand...",
lines=5,
autofocus=True,
elem_id="query_input"
)
submit_button = gr.Button("🚀 Launch Analysis", variant="primary", elem_id="submit_button")
gr.Markdown("### 2. Live Analysis Feed")
with gr.Column():
step1_status = gr.Markdown("⚪ **Step 1:** Query Refinement")
step2_status = gr.Markdown("⚪ **Step 2:** MCP Patent Database Search")
step3_status = gr.Markdown("⚪ **Step 3:** Final Report Generation")
with gr.Accordion("🔎 See the AI-Refined Technical Query", open=False):
gr.Markdown("<p style='font-size:0.9rem;color:grey;'>To ensure the most accurate search, our AI reformulates your idea into a detailed technical query. This is what's sent to the patent search tool.</p>")
rewritten_query_box = gr.Textbox(label="AI-Refined Technical Query", interactive=False, lines=8, visible=False)
with gr.Column(scale=2):
gr.Markdown("### 3. Analysis Results")
with gr.Tabs():
with gr.TabItem("📈 Strengths & Weaknesses"):
with gr.Row():
strengths_output = gr.Markdown(label="Strengths")
weaknesses_output = gr.Markdown(label="Weaknesses")
with gr.TabItem("⭐ Patentability Score"):
with gr.Row():
with gr.Column(scale=2):
rating_df_output = gr.DataFrame(headers=["Criterion", "Score (out of 10)"], interactive=False)
with gr.Column(scale=3):
rating_output = gr.Plot()
with gr.TabItem("📜 Similar Existing Patents"):
patents_output = gr.DataFrame(interactive=False)
with gr.TabItem("🗺️ Geographic Distribution"):
country_map_output = gr.Plot()
def run_example(query):
"""Non-generator wrapper for examples"""
# For examples, return the final results directly
for result in analyze_patent_idea(query):
final_result = result # The last yield contains all the results
return [
final_result[step1_status],
final_result[step2_status],
final_result[step3_status],
final_result[rewritten_query_box],
final_result[strengths_output],
final_result[weaknesses_output],
final_result[rating_output],
final_result[rating_df_output],
final_result[patents_output],
final_result[country_map_output]
]
gr.Examples(
examples=[
"A coffee mug with a carbon handle that doesn't burn your hand and includes a cooling mechanism.",
"A real-time translation system for video calls, natively integrated without a third-party app.",
"A biodegradable food packaging made from algae that dissolves in hot water."
],
inputs=query_input,
outputs=[
step1_status,
step2_status,
step3_status,
rewritten_query_box,
strengths_output,
weaknesses_output,
rating_output,
rating_df_output,
patents_output,
country_map_output
],
fn=run_example,
cache_examples=True,
label="Example Ideas"
)
with gr.Accordion("How does this work?", open=False):
gr.Markdown(
"""
This application uses a multi-step AI process:
1. **Query Refinement:** Your initial idea is sent to a Large Language Model (LLM) to be reformulated into a more formal, technical description suitable for a patent search.
2. **MCP Tool Call:** The refined query is then sent via the **Model Context Protocol (MCP)** to a specialized tool. This tool analyzes the query against a patent database.
3. **Structured Analysis:** The tool returns a structured analysis, including identified strengths, weaknesses, a quantified rating of its potential, and a list of similar patents already in existence.
4. **Final Report:** The application then formats this data into the user-friendly report you see above.
"""
)
outputs_list = [
step1_status,
step2_status,
step3_status,
rewritten_query_box,
strengths_output,
weaknesses_output,
rating_output,
rating_df_output,
patents_output,
country_map_output
]
# Connect the button to the analysis function
submit_button.click(
fn=analyze_patent_idea,
inputs=query_input,
outputs=outputs_list
)
if __name__ == "__main__":
app.queue(
default_concurrency_limit=20,
max_size=50
).launch(mcp_server=True, share=True) |