Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
from typing import List, Dict, Optional
|
| 4 |
+
from huggingface_hub import HfApi
|
| 5 |
+
import os
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
import csv
|
| 8 |
+
from pinecone import Pinecone
|
| 9 |
+
from openai import OpenAI
|
| 10 |
+
|
| 11 |
+
# Load environment variables
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
# Initialize HF API with token if available
|
| 15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 16 |
+
api = HfApi(token=HF_TOKEN) if HF_TOKEN else HfApi()
|
| 17 |
+
|
| 18 |
+
def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
| 19 |
+
"""
|
| 20 |
+
Search for MCPs in Hugging Face Spaces.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
query: Search query string
|
| 24 |
+
limit: Maximum number of results to return (default: 3)
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Dictionary containing search results with MCP information
|
| 28 |
+
"""
|
| 29 |
+
try:
|
| 30 |
+
print(f"Debug - Search query: '{query}'") # Debug log
|
| 31 |
+
|
| 32 |
+
# Use list_spaces API with mcp-server filter and sort by likes
|
| 33 |
+
spaces = list(api.list_spaces(
|
| 34 |
+
search=query,
|
| 35 |
+
sort="likes",
|
| 36 |
+
direction=-1, # Descending order
|
| 37 |
+
filter="mcp-server"
|
| 38 |
+
))
|
| 39 |
+
|
| 40 |
+
results = []
|
| 41 |
+
for space in spaces[:limit]: # Process up to limit matches
|
| 42 |
+
try:
|
| 43 |
+
space_info = {
|
| 44 |
+
"id": space.id,
|
| 45 |
+
"likes": space.likes,
|
| 46 |
+
"trending_score": space.trending_score,
|
| 47 |
+
"source": "huggingface"
|
| 48 |
+
}
|
| 49 |
+
results.append(space_info)
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error processing space {space.id}: {str(e)}")
|
| 52 |
+
continue
|
| 53 |
+
|
| 54 |
+
return {
|
| 55 |
+
"results": results,
|
| 56 |
+
"total": len(results)
|
| 57 |
+
}
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Debug - Critical error in keyword_search_hf_spaces: {str(e)}")
|
| 60 |
+
return {
|
| 61 |
+
"error": str(e),
|
| 62 |
+
"results": [],
|
| 63 |
+
"total": 0
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
def keyword_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
| 67 |
+
"""
|
| 68 |
+
Search for MCPs in Smithery Registry.
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
query: Search query string
|
| 72 |
+
limit: Maximum number of results to return (default: 3)
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
Dictionary containing search results with MCP information
|
| 76 |
+
"""
|
| 77 |
+
try:
|
| 78 |
+
# Get Smithery token from environment
|
| 79 |
+
SMITHERY_TOKEN = os.getenv("SMITHERY_TOKEN")
|
| 80 |
+
if not SMITHERY_TOKEN:
|
| 81 |
+
return {
|
| 82 |
+
"error": "SMITHERY_TOKEN not found",
|
| 83 |
+
"results": [],
|
| 84 |
+
"total": 0
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
# Prepare headers and query parameters
|
| 88 |
+
headers = {
|
| 89 |
+
'Authorization': f'Bearer {SMITHERY_TOKEN}'
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
# Add filters for deployed and verified servers
|
| 93 |
+
search_query = f"{query} is:deployed"
|
| 94 |
+
|
| 95 |
+
params = {
|
| 96 |
+
'q': search_query,
|
| 97 |
+
'page': 1,
|
| 98 |
+
'pageSize': 100 # Get maximum results
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
# Make API request
|
| 102 |
+
response = requests.get(
|
| 103 |
+
'https://registry.smithery.ai/servers',
|
| 104 |
+
headers=headers,
|
| 105 |
+
params=params
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if response.status_code != 200:
|
| 109 |
+
return {
|
| 110 |
+
"error": f"Smithery API error: {response.status_code}",
|
| 111 |
+
"results": [],
|
| 112 |
+
"total": 0
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
# Parse response
|
| 116 |
+
data = response.json()
|
| 117 |
+
results = []
|
| 118 |
+
|
| 119 |
+
# Sort servers by useCount and take top results up to limit
|
| 120 |
+
servers = sorted(data.get('servers', []), key=lambda x: x.get('useCount', 0), reverse=True)[:limit]
|
| 121 |
+
|
| 122 |
+
for server in servers:
|
| 123 |
+
server_info = {
|
| 124 |
+
"id": server.get('qualifiedName'),
|
| 125 |
+
"name": server.get('displayName'),
|
| 126 |
+
"description": server.get('description'),
|
| 127 |
+
"likes": server.get('useCount', 0),
|
| 128 |
+
"source": "smithery"
|
| 129 |
+
}
|
| 130 |
+
results.append(server_info)
|
| 131 |
+
|
| 132 |
+
return {
|
| 133 |
+
"results": results,
|
| 134 |
+
"total": len(results)
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
return {
|
| 139 |
+
"error": str(e),
|
| 140 |
+
"results": [],
|
| 141 |
+
"total": 0
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
| 145 |
+
"""
|
| 146 |
+
Search for MCPs using keyword matching.
|
| 147 |
+
|
| 148 |
+
Args:
|
| 149 |
+
query: Keyword search query
|
| 150 |
+
sources: List of sources to search from ('huggingface', 'smithery')
|
| 151 |
+
limit: Maximum number of results to return (default: 3)
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Dictionary containing combined search results
|
| 155 |
+
"""
|
| 156 |
+
all_results = []
|
| 157 |
+
|
| 158 |
+
if "huggingface" in sources:
|
| 159 |
+
hf_results = keyword_search_hf_spaces(query, limit)
|
| 160 |
+
all_results.extend(hf_results.get("results", []))
|
| 161 |
+
|
| 162 |
+
if "smithery" in sources:
|
| 163 |
+
smithery_results = keyword_search_smithery(query, limit)
|
| 164 |
+
all_results.extend(smithery_results.get("results", []))
|
| 165 |
+
|
| 166 |
+
return {
|
| 167 |
+
"results": all_results,
|
| 168 |
+
"total": len(all_results),
|
| 169 |
+
"search_type": "keyword"
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
def embedding_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
| 173 |
+
"""
|
| 174 |
+
Search for MCPs in Hugging Face Spaces using semantic embedding matching.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
query: Natural language search query
|
| 178 |
+
limit: Maximum number of results to return (default: 3)
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
Dictionary containing search results with MCP information
|
| 182 |
+
"""
|
| 183 |
+
try:
|
| 184 |
+
# Initialize Pinecone and OpenAI
|
| 185 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 186 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 187 |
+
|
| 188 |
+
if not pinecone_api_key or not openai_api_key:
|
| 189 |
+
return {
|
| 190 |
+
"error": "API keys not found",
|
| 191 |
+
"results": [],
|
| 192 |
+
"total": 0
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
# Initialize clients
|
| 196 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
| 197 |
+
index = pc.Index("hf-mcp")
|
| 198 |
+
client = OpenAI(api_key=openai_api_key)
|
| 199 |
+
|
| 200 |
+
# Generate embedding using OpenAI
|
| 201 |
+
response = client.embeddings.create(
|
| 202 |
+
input=query,
|
| 203 |
+
model="text-embedding-3-large"
|
| 204 |
+
)
|
| 205 |
+
query_embedding = response.data[0].embedding
|
| 206 |
+
|
| 207 |
+
# Search in Pinecone using the generated embedding
|
| 208 |
+
results = index.query(
|
| 209 |
+
namespace="",
|
| 210 |
+
vector=query_embedding,
|
| 211 |
+
top_k=limit
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Process results and get detailed information
|
| 215 |
+
space_results = []
|
| 216 |
+
if not results.matches:
|
| 217 |
+
return {
|
| 218 |
+
"results": [],
|
| 219 |
+
"total": 0
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
for match in results.matches:
|
| 223 |
+
space_id = match.id
|
| 224 |
+
try:
|
| 225 |
+
# Remove 'spaces/' prefix if present
|
| 226 |
+
repo_id = space_id.replace('spaces/', '')
|
| 227 |
+
|
| 228 |
+
# Get space information from HF API
|
| 229 |
+
space = api.space_info(repo_id)
|
| 230 |
+
space_info = {
|
| 231 |
+
"id": space.id,
|
| 232 |
+
"likes": space.likes,
|
| 233 |
+
"trending_score": space.trending_score,
|
| 234 |
+
"source": "huggingface",
|
| 235 |
+
"score": match.score # Add similarity score
|
| 236 |
+
}
|
| 237 |
+
space_results.append(space_info)
|
| 238 |
+
except Exception as e:
|
| 239 |
+
continue
|
| 240 |
+
|
| 241 |
+
return {
|
| 242 |
+
"results": space_results,
|
| 243 |
+
"total": len(space_results)
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
except Exception as e:
|
| 247 |
+
return {
|
| 248 |
+
"error": str(e),
|
| 249 |
+
"results": [],
|
| 250 |
+
"total": 0
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
def embedding_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
| 254 |
+
"""
|
| 255 |
+
Search for MCPs in Smithery Registry using semantic embedding matching.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
query: Natural language search query
|
| 259 |
+
limit: Maximum number of results to return (default: 3)
|
| 260 |
+
|
| 261 |
+
Returns:
|
| 262 |
+
Dictionary containing search results with MCP information
|
| 263 |
+
"""
|
| 264 |
+
try:
|
| 265 |
+
# Initialize Pinecone and OpenAI
|
| 266 |
+
from pinecone import Pinecone
|
| 267 |
+
from openai import OpenAI
|
| 268 |
+
import os
|
| 269 |
+
|
| 270 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
| 271 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
| 272 |
+
smithery_token = os.getenv('SMITHERY_TOKEN')
|
| 273 |
+
|
| 274 |
+
if not pinecone_api_key or not openai_api_key or not smithery_token:
|
| 275 |
+
return {
|
| 276 |
+
"error": "API keys not found",
|
| 277 |
+
"results": [],
|
| 278 |
+
"total": 0
|
| 279 |
+
}
|
| 280 |
+
|
| 281 |
+
# Initialize clients
|
| 282 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
| 283 |
+
index = pc.Index("smithery-mcp")
|
| 284 |
+
client = OpenAI(api_key=openai_api_key)
|
| 285 |
+
|
| 286 |
+
# Generate embedding using OpenAI
|
| 287 |
+
response = client.embeddings.create(
|
| 288 |
+
input=query,
|
| 289 |
+
model="text-embedding-3-large"
|
| 290 |
+
)
|
| 291 |
+
query_embedding = response.data[0].embedding
|
| 292 |
+
|
| 293 |
+
# Search in Pinecone using the generated embedding
|
| 294 |
+
results = index.query(
|
| 295 |
+
namespace="",
|
| 296 |
+
vector=query_embedding,
|
| 297 |
+
top_k=limit
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Process results and get detailed information from Smithery
|
| 301 |
+
server_results = []
|
| 302 |
+
if not results.matches:
|
| 303 |
+
return {
|
| 304 |
+
"results": [],
|
| 305 |
+
"total": 0
|
| 306 |
+
}
|
| 307 |
+
|
| 308 |
+
# Prepare headers for Smithery API
|
| 309 |
+
headers = {
|
| 310 |
+
'Authorization': f'Bearer {smithery_token}'
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
for match in results.matches:
|
| 314 |
+
server_id = match.id
|
| 315 |
+
try:
|
| 316 |
+
# Get server information from Smithery API
|
| 317 |
+
response = requests.get(
|
| 318 |
+
f'https://registry.smithery.ai/servers/{server_id}',
|
| 319 |
+
headers=headers
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
if response.status_code != 200:
|
| 323 |
+
continue
|
| 324 |
+
|
| 325 |
+
server = response.json()
|
| 326 |
+
server_info = {
|
| 327 |
+
"id": server.get('qualifiedName'),
|
| 328 |
+
"name": server.get('displayName'),
|
| 329 |
+
"description": server.get('description'),
|
| 330 |
+
"likes": server.get('useCount', 0),
|
| 331 |
+
"source": "smithery",
|
| 332 |
+
"score": match.score # Add similarity score
|
| 333 |
+
}
|
| 334 |
+
server_results.append(server_info)
|
| 335 |
+
except Exception as e:
|
| 336 |
+
continue
|
| 337 |
+
|
| 338 |
+
return {
|
| 339 |
+
"results": server_results,
|
| 340 |
+
"total": len(server_results)
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
except Exception as e:
|
| 344 |
+
return {
|
| 345 |
+
"error": str(e),
|
| 346 |
+
"results": [],
|
| 347 |
+
"total": 0
|
| 348 |
+
}
|
| 349 |
+
|
| 350 |
+
def embedding_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
| 351 |
+
"""
|
| 352 |
+
Search for MCPs using semantic embedding matching.
|
| 353 |
+
|
| 354 |
+
Args:
|
| 355 |
+
query: Natural language search query
|
| 356 |
+
sources: List of sources to search from ('huggingface', 'smithery')
|
| 357 |
+
limit: Maximum number of results to return (default: 3)
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
Dictionary containing combined search results
|
| 361 |
+
"""
|
| 362 |
+
all_results = []
|
| 363 |
+
|
| 364 |
+
if "huggingface" in sources:
|
| 365 |
+
try:
|
| 366 |
+
hf_results = embedding_search_hf_spaces(query, limit)
|
| 367 |
+
all_results.extend(hf_results.get("results", []))
|
| 368 |
+
except Exception as e:
|
| 369 |
+
# Fallback to keyword search if vector search fails
|
| 370 |
+
hf_results = keyword_search_hf_spaces(query, limit)
|
| 371 |
+
all_results.extend(hf_results.get("results", []))
|
| 372 |
+
|
| 373 |
+
if "smithery" in sources:
|
| 374 |
+
try:
|
| 375 |
+
smithery_results = embedding_search_smithery(query, limit)
|
| 376 |
+
all_results.extend(smithery_results.get("results", []))
|
| 377 |
+
except Exception as e:
|
| 378 |
+
# Fallback to keyword search if vector search fails
|
| 379 |
+
smithery_results = keyword_search_smithery(query, limit)
|
| 380 |
+
all_results.extend(smithery_results.get("results", []))
|
| 381 |
+
|
| 382 |
+
return {
|
| 383 |
+
"results": all_results,
|
| 384 |
+
"total": len(all_results),
|
| 385 |
+
"search_type": "embedding"
|
| 386 |
+
}
|
| 387 |
+
|
| 388 |
+
# Create the Gradio interface
|
| 389 |
+
with gr.Blocks(title="🚦 Router MCP", css="""
|
| 390 |
+
#client_radio {
|
| 391 |
+
margin-top: 0 !important;
|
| 392 |
+
padding-top: 0 !important;
|
| 393 |
+
}
|
| 394 |
+
#client_radio .radio-group {
|
| 395 |
+
gap: 0.5rem !important;
|
| 396 |
+
}
|
| 397 |
+
""") as demo:
|
| 398 |
+
gr.Markdown("# 🚦 Router MCP")
|
| 399 |
+
gr.Markdown("### Search MCP compatible spaces using natural language")
|
| 400 |
+
|
| 401 |
+
with gr.Row():
|
| 402 |
+
with gr.Column():
|
| 403 |
+
query_input = gr.Textbox(
|
| 404 |
+
label="Describe the MCP Server you're looking for",
|
| 405 |
+
placeholder="e.g., 'I need an MCP Server that can generate images'"
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
gr.Markdown("### Select sources to search")
|
| 409 |
+
hf_checkbox = gr.Checkbox(label="Hugging Face Spaces", value=True)
|
| 410 |
+
smithery_checkbox = gr.Checkbox(label="Smithery", value=False)
|
| 411 |
+
registry_checkbox = gr.Checkbox(label="Registry (Coming Soon)", value=False, interactive=False)
|
| 412 |
+
|
| 413 |
+
result_limit = gr.Number(
|
| 414 |
+
label="Maximum number of results for each source",
|
| 415 |
+
value=3,
|
| 416 |
+
minimum=1,
|
| 417 |
+
maximum=20,
|
| 418 |
+
step=1
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
gr.Markdown("### Select your MCP Client")
|
| 422 |
+
client_radio = gr.Radio(
|
| 423 |
+
choices=["Cursor", "Windsurf", "Claude Desktop", "VS Code", "Gradio"],
|
| 424 |
+
label="",
|
| 425 |
+
value="Cursor",
|
| 426 |
+
interactive=True,
|
| 427 |
+
elem_id="client_radio"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
with gr.Row():
|
| 431 |
+
keyword_search_button = gr.Button("Keyword Search")
|
| 432 |
+
embedding_search_button = gr.Button("Semantic Search")
|
| 433 |
+
|
| 434 |
+
with gr.Column():
|
| 435 |
+
results_output = gr.JSON(label="Search Results")
|
| 436 |
+
|
| 437 |
+
# Set up event handlers
|
| 438 |
+
def get_sources():
|
| 439 |
+
return ["huggingface" if hf_checkbox.value else "", "smithery" if smithery_checkbox.value else ""]
|
| 440 |
+
|
| 441 |
+
def handle_keyword_mcp_search(query: str, hf: bool, sm: bool, limit: int) -> Dict:
|
| 442 |
+
"""
|
| 443 |
+
Handle keyword-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
| 444 |
+
|
| 445 |
+
Args:
|
| 446 |
+
query (str): The search query string to find matching MCP servers
|
| 447 |
+
hf (bool): Whether to include Hugging Face Spaces in the search (converted to "huggingface" string if True)
|
| 448 |
+
sm (bool): Whether to include Smithery in the search (converted to "smithery" string if True)
|
| 449 |
+
limit (int): Maximum number of results to return per source (default: 3)
|
| 450 |
+
|
| 451 |
+
Returns:
|
| 452 |
+
Dict: A dictionary containing the search results with the following keys:
|
| 453 |
+
- results: List of found MCP servers
|
| 454 |
+
- total: Total number of results
|
| 455 |
+
- search_type: Type of search performed ("keyword")
|
| 456 |
+
"""
|
| 457 |
+
return keyword_search(
|
| 458 |
+
query,
|
| 459 |
+
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 460 |
+
int(limit)
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
def handle_embedding_mcp_search(query: str, hf: bool, sm: bool, limit: int) -> Dict:
|
| 464 |
+
"""
|
| 465 |
+
Handle semantic embedding-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
| 466 |
+
|
| 467 |
+
Args:
|
| 468 |
+
query (str): The natural language search query to find semantically similar MCP servers
|
| 469 |
+
hf (bool): Whether to include Hugging Face Spaces in the search (converted to "huggingface" string if True)
|
| 470 |
+
sm (bool): Whether to include Smithery in the search (converted to "smithery" string if True)
|
| 471 |
+
limit (int): Maximum number of results to return per source (default: 3)
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
Dict: A dictionary containing the search results with the following keys:
|
| 475 |
+
- results: List of found MCP servers with similarity scores
|
| 476 |
+
- total: Total number of results
|
| 477 |
+
- search_type: Type of search performed ("embedding")
|
| 478 |
+
"""
|
| 479 |
+
return embedding_search(
|
| 480 |
+
query,
|
| 481 |
+
["huggingface" if hf else "", "smithery" if sm else ""],
|
| 482 |
+
int(limit)
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
keyword_search_button.click(
|
| 486 |
+
fn=handle_keyword_mcp_search,
|
| 487 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
| 488 |
+
outputs=results_output
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
embedding_search_button.click(
|
| 492 |
+
fn=handle_embedding_mcp_search,
|
| 493 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
| 494 |
+
outputs=results_output
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
# query_input.submit(
|
| 498 |
+
# fn=handle_embedding_search,
|
| 499 |
+
# inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
| 500 |
+
# outputs=results_output
|
| 501 |
+
# )
|
| 502 |
+
|
| 503 |
+
if __name__ == "__main__":
|
| 504 |
+
demo.launch(mcp_server=True)
|