Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from typing import List, Dict, Optional
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import csv
|
8 |
+
from pinecone import Pinecone
|
9 |
+
from openai import OpenAI
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Initialize HF API with token if available
|
15 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
+
api = HfApi(token=HF_TOKEN) if HF_TOKEN else HfApi()
|
17 |
+
|
18 |
+
def keyword_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
19 |
+
"""
|
20 |
+
Search for MCPs in Hugging Face Spaces.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
query: Search query string
|
24 |
+
limit: Maximum number of results to return (default: 3)
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
Dictionary containing search results with MCP information
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
print(f"Debug - Search query: '{query}'") # Debug log
|
31 |
+
|
32 |
+
# Use list_spaces API with mcp-server filter and sort by likes
|
33 |
+
spaces = list(api.list_spaces(
|
34 |
+
search=query,
|
35 |
+
sort="likes",
|
36 |
+
direction=-1, # Descending order
|
37 |
+
filter="mcp-server"
|
38 |
+
))
|
39 |
+
|
40 |
+
results = []
|
41 |
+
for space in spaces[:limit]: # Process up to limit matches
|
42 |
+
try:
|
43 |
+
space_info = {
|
44 |
+
"id": space.id,
|
45 |
+
"likes": space.likes,
|
46 |
+
"trending_score": space.trending_score,
|
47 |
+
"source": "huggingface"
|
48 |
+
}
|
49 |
+
results.append(space_info)
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error processing space {space.id}: {str(e)}")
|
52 |
+
continue
|
53 |
+
|
54 |
+
return {
|
55 |
+
"results": results,
|
56 |
+
"total": len(results)
|
57 |
+
}
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Debug - Critical error in keyword_search_hf_spaces: {str(e)}")
|
60 |
+
return {
|
61 |
+
"error": str(e),
|
62 |
+
"results": [],
|
63 |
+
"total": 0
|
64 |
+
}
|
65 |
+
|
66 |
+
def keyword_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
67 |
+
"""
|
68 |
+
Search for MCPs in Smithery Registry.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
query: Search query string
|
72 |
+
limit: Maximum number of results to return (default: 3)
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
Dictionary containing search results with MCP information
|
76 |
+
"""
|
77 |
+
try:
|
78 |
+
# Get Smithery token from environment
|
79 |
+
SMITHERY_TOKEN = os.getenv("SMITHERY_TOKEN")
|
80 |
+
if not SMITHERY_TOKEN:
|
81 |
+
return {
|
82 |
+
"error": "SMITHERY_TOKEN not found",
|
83 |
+
"results": [],
|
84 |
+
"total": 0
|
85 |
+
}
|
86 |
+
|
87 |
+
# Prepare headers and query parameters
|
88 |
+
headers = {
|
89 |
+
'Authorization': f'Bearer {SMITHERY_TOKEN}'
|
90 |
+
}
|
91 |
+
|
92 |
+
# Add filters for deployed and verified servers
|
93 |
+
search_query = f"{query} is:deployed"
|
94 |
+
|
95 |
+
params = {
|
96 |
+
'q': search_query,
|
97 |
+
'page': 1,
|
98 |
+
'pageSize': 100 # Get maximum results
|
99 |
+
}
|
100 |
+
|
101 |
+
# Make API request
|
102 |
+
response = requests.get(
|
103 |
+
'https://registry.smithery.ai/servers',
|
104 |
+
headers=headers,
|
105 |
+
params=params
|
106 |
+
)
|
107 |
+
|
108 |
+
if response.status_code != 200:
|
109 |
+
return {
|
110 |
+
"error": f"Smithery API error: {response.status_code}",
|
111 |
+
"results": [],
|
112 |
+
"total": 0
|
113 |
+
}
|
114 |
+
|
115 |
+
# Parse response
|
116 |
+
data = response.json()
|
117 |
+
results = []
|
118 |
+
|
119 |
+
# Sort servers by useCount and take top results up to limit
|
120 |
+
servers = sorted(data.get('servers', []), key=lambda x: x.get('useCount', 0), reverse=True)[:limit]
|
121 |
+
|
122 |
+
for server in servers:
|
123 |
+
server_info = {
|
124 |
+
"id": server.get('qualifiedName'),
|
125 |
+
"name": server.get('displayName'),
|
126 |
+
"description": server.get('description'),
|
127 |
+
"likes": server.get('useCount', 0),
|
128 |
+
"source": "smithery"
|
129 |
+
}
|
130 |
+
results.append(server_info)
|
131 |
+
|
132 |
+
return {
|
133 |
+
"results": results,
|
134 |
+
"total": len(results)
|
135 |
+
}
|
136 |
+
|
137 |
+
except Exception as e:
|
138 |
+
return {
|
139 |
+
"error": str(e),
|
140 |
+
"results": [],
|
141 |
+
"total": 0
|
142 |
+
}
|
143 |
+
|
144 |
+
def keyword_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
145 |
+
"""
|
146 |
+
Search for MCPs using keyword matching.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
query: Keyword search query
|
150 |
+
sources: List of sources to search from ('huggingface', 'smithery')
|
151 |
+
limit: Maximum number of results to return (default: 3)
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
Dictionary containing combined search results
|
155 |
+
"""
|
156 |
+
all_results = []
|
157 |
+
|
158 |
+
if "huggingface" in sources:
|
159 |
+
hf_results = keyword_search_hf_spaces(query, limit)
|
160 |
+
all_results.extend(hf_results.get("results", []))
|
161 |
+
|
162 |
+
if "smithery" in sources:
|
163 |
+
smithery_results = keyword_search_smithery(query, limit)
|
164 |
+
all_results.extend(smithery_results.get("results", []))
|
165 |
+
|
166 |
+
return {
|
167 |
+
"results": all_results,
|
168 |
+
"total": len(all_results),
|
169 |
+
"search_type": "keyword"
|
170 |
+
}
|
171 |
+
|
172 |
+
def embedding_search_hf_spaces(query: str = "", limit: int = 3) -> Dict:
|
173 |
+
"""
|
174 |
+
Search for MCPs in Hugging Face Spaces using semantic embedding matching.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
query: Natural language search query
|
178 |
+
limit: Maximum number of results to return (default: 3)
|
179 |
+
|
180 |
+
Returns:
|
181 |
+
Dictionary containing search results with MCP information
|
182 |
+
"""
|
183 |
+
try:
|
184 |
+
# Initialize Pinecone and OpenAI
|
185 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
186 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
187 |
+
|
188 |
+
if not pinecone_api_key or not openai_api_key:
|
189 |
+
return {
|
190 |
+
"error": "API keys not found",
|
191 |
+
"results": [],
|
192 |
+
"total": 0
|
193 |
+
}
|
194 |
+
|
195 |
+
# Initialize clients
|
196 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
197 |
+
index = pc.Index("hf-mcp")
|
198 |
+
client = OpenAI(api_key=openai_api_key)
|
199 |
+
|
200 |
+
# Generate embedding using OpenAI
|
201 |
+
response = client.embeddings.create(
|
202 |
+
input=query,
|
203 |
+
model="text-embedding-3-large"
|
204 |
+
)
|
205 |
+
query_embedding = response.data[0].embedding
|
206 |
+
|
207 |
+
# Search in Pinecone using the generated embedding
|
208 |
+
results = index.query(
|
209 |
+
namespace="",
|
210 |
+
vector=query_embedding,
|
211 |
+
top_k=limit
|
212 |
+
)
|
213 |
+
|
214 |
+
# Process results and get detailed information
|
215 |
+
space_results = []
|
216 |
+
if not results.matches:
|
217 |
+
return {
|
218 |
+
"results": [],
|
219 |
+
"total": 0
|
220 |
+
}
|
221 |
+
|
222 |
+
for match in results.matches:
|
223 |
+
space_id = match.id
|
224 |
+
try:
|
225 |
+
# Remove 'spaces/' prefix if present
|
226 |
+
repo_id = space_id.replace('spaces/', '')
|
227 |
+
|
228 |
+
# Get space information from HF API
|
229 |
+
space = api.space_info(repo_id)
|
230 |
+
space_info = {
|
231 |
+
"id": space.id,
|
232 |
+
"likes": space.likes,
|
233 |
+
"trending_score": space.trending_score,
|
234 |
+
"source": "huggingface",
|
235 |
+
"score": match.score # Add similarity score
|
236 |
+
}
|
237 |
+
space_results.append(space_info)
|
238 |
+
except Exception as e:
|
239 |
+
continue
|
240 |
+
|
241 |
+
return {
|
242 |
+
"results": space_results,
|
243 |
+
"total": len(space_results)
|
244 |
+
}
|
245 |
+
|
246 |
+
except Exception as e:
|
247 |
+
return {
|
248 |
+
"error": str(e),
|
249 |
+
"results": [],
|
250 |
+
"total": 0
|
251 |
+
}
|
252 |
+
|
253 |
+
def embedding_search_smithery(query: str = "", limit: int = 3) -> Dict:
|
254 |
+
"""
|
255 |
+
Search for MCPs in Smithery Registry using semantic embedding matching.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
query: Natural language search query
|
259 |
+
limit: Maximum number of results to return (default: 3)
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
Dictionary containing search results with MCP information
|
263 |
+
"""
|
264 |
+
try:
|
265 |
+
# Initialize Pinecone and OpenAI
|
266 |
+
from pinecone import Pinecone
|
267 |
+
from openai import OpenAI
|
268 |
+
import os
|
269 |
+
|
270 |
+
pinecone_api_key = os.getenv('PINECONE_API_KEY')
|
271 |
+
openai_api_key = os.getenv('OPENAI_API_KEY')
|
272 |
+
smithery_token = os.getenv('SMITHERY_TOKEN')
|
273 |
+
|
274 |
+
if not pinecone_api_key or not openai_api_key or not smithery_token:
|
275 |
+
return {
|
276 |
+
"error": "API keys not found",
|
277 |
+
"results": [],
|
278 |
+
"total": 0
|
279 |
+
}
|
280 |
+
|
281 |
+
# Initialize clients
|
282 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
283 |
+
index = pc.Index("smithery-mcp")
|
284 |
+
client = OpenAI(api_key=openai_api_key)
|
285 |
+
|
286 |
+
# Generate embedding using OpenAI
|
287 |
+
response = client.embeddings.create(
|
288 |
+
input=query,
|
289 |
+
model="text-embedding-3-large"
|
290 |
+
)
|
291 |
+
query_embedding = response.data[0].embedding
|
292 |
+
|
293 |
+
# Search in Pinecone using the generated embedding
|
294 |
+
results = index.query(
|
295 |
+
namespace="",
|
296 |
+
vector=query_embedding,
|
297 |
+
top_k=limit
|
298 |
+
)
|
299 |
+
|
300 |
+
# Process results and get detailed information from Smithery
|
301 |
+
server_results = []
|
302 |
+
if not results.matches:
|
303 |
+
return {
|
304 |
+
"results": [],
|
305 |
+
"total": 0
|
306 |
+
}
|
307 |
+
|
308 |
+
# Prepare headers for Smithery API
|
309 |
+
headers = {
|
310 |
+
'Authorization': f'Bearer {smithery_token}'
|
311 |
+
}
|
312 |
+
|
313 |
+
for match in results.matches:
|
314 |
+
server_id = match.id
|
315 |
+
try:
|
316 |
+
# Get server information from Smithery API
|
317 |
+
response = requests.get(
|
318 |
+
f'https://registry.smithery.ai/servers/{server_id}',
|
319 |
+
headers=headers
|
320 |
+
)
|
321 |
+
|
322 |
+
if response.status_code != 200:
|
323 |
+
continue
|
324 |
+
|
325 |
+
server = response.json()
|
326 |
+
server_info = {
|
327 |
+
"id": server.get('qualifiedName'),
|
328 |
+
"name": server.get('displayName'),
|
329 |
+
"description": server.get('description'),
|
330 |
+
"likes": server.get('useCount', 0),
|
331 |
+
"source": "smithery",
|
332 |
+
"score": match.score # Add similarity score
|
333 |
+
}
|
334 |
+
server_results.append(server_info)
|
335 |
+
except Exception as e:
|
336 |
+
continue
|
337 |
+
|
338 |
+
return {
|
339 |
+
"results": server_results,
|
340 |
+
"total": len(server_results)
|
341 |
+
}
|
342 |
+
|
343 |
+
except Exception as e:
|
344 |
+
return {
|
345 |
+
"error": str(e),
|
346 |
+
"results": [],
|
347 |
+
"total": 0
|
348 |
+
}
|
349 |
+
|
350 |
+
def embedding_search(query: str, sources: List[str], limit: int = 3) -> Dict:
|
351 |
+
"""
|
352 |
+
Search for MCPs using semantic embedding matching.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
query: Natural language search query
|
356 |
+
sources: List of sources to search from ('huggingface', 'smithery')
|
357 |
+
limit: Maximum number of results to return (default: 3)
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
Dictionary containing combined search results
|
361 |
+
"""
|
362 |
+
all_results = []
|
363 |
+
|
364 |
+
if "huggingface" in sources:
|
365 |
+
try:
|
366 |
+
hf_results = embedding_search_hf_spaces(query, limit)
|
367 |
+
all_results.extend(hf_results.get("results", []))
|
368 |
+
except Exception as e:
|
369 |
+
# Fallback to keyword search if vector search fails
|
370 |
+
hf_results = keyword_search_hf_spaces(query, limit)
|
371 |
+
all_results.extend(hf_results.get("results", []))
|
372 |
+
|
373 |
+
if "smithery" in sources:
|
374 |
+
try:
|
375 |
+
smithery_results = embedding_search_smithery(query, limit)
|
376 |
+
all_results.extend(smithery_results.get("results", []))
|
377 |
+
except Exception as e:
|
378 |
+
# Fallback to keyword search if vector search fails
|
379 |
+
smithery_results = keyword_search_smithery(query, limit)
|
380 |
+
all_results.extend(smithery_results.get("results", []))
|
381 |
+
|
382 |
+
return {
|
383 |
+
"results": all_results,
|
384 |
+
"total": len(all_results),
|
385 |
+
"search_type": "embedding"
|
386 |
+
}
|
387 |
+
|
388 |
+
# Create the Gradio interface
|
389 |
+
with gr.Blocks(title="🚦 Router MCP", css="""
|
390 |
+
#client_radio {
|
391 |
+
margin-top: 0 !important;
|
392 |
+
padding-top: 0 !important;
|
393 |
+
}
|
394 |
+
#client_radio .radio-group {
|
395 |
+
gap: 0.5rem !important;
|
396 |
+
}
|
397 |
+
""") as demo:
|
398 |
+
gr.Markdown("# 🚦 Router MCP")
|
399 |
+
gr.Markdown("### Search MCP compatible spaces using natural language")
|
400 |
+
|
401 |
+
with gr.Row():
|
402 |
+
with gr.Column():
|
403 |
+
query_input = gr.Textbox(
|
404 |
+
label="Describe the MCP Server you're looking for",
|
405 |
+
placeholder="e.g., 'I need an MCP Server that can generate images'"
|
406 |
+
)
|
407 |
+
|
408 |
+
gr.Markdown("### Select sources to search")
|
409 |
+
hf_checkbox = gr.Checkbox(label="Hugging Face Spaces", value=True)
|
410 |
+
smithery_checkbox = gr.Checkbox(label="Smithery", value=False)
|
411 |
+
registry_checkbox = gr.Checkbox(label="Registry (Coming Soon)", value=False, interactive=False)
|
412 |
+
|
413 |
+
result_limit = gr.Number(
|
414 |
+
label="Maximum number of results for each source",
|
415 |
+
value=3,
|
416 |
+
minimum=1,
|
417 |
+
maximum=20,
|
418 |
+
step=1
|
419 |
+
)
|
420 |
+
|
421 |
+
gr.Markdown("### Select your MCP Client")
|
422 |
+
client_radio = gr.Radio(
|
423 |
+
choices=["Cursor", "Windsurf", "Claude Desktop", "VS Code", "Gradio"],
|
424 |
+
label="",
|
425 |
+
value="Cursor",
|
426 |
+
interactive=True,
|
427 |
+
elem_id="client_radio"
|
428 |
+
)
|
429 |
+
|
430 |
+
with gr.Row():
|
431 |
+
keyword_search_button = gr.Button("Keyword Search")
|
432 |
+
embedding_search_button = gr.Button("Semantic Search")
|
433 |
+
|
434 |
+
with gr.Column():
|
435 |
+
results_output = gr.JSON(label="Search Results")
|
436 |
+
|
437 |
+
# Set up event handlers
|
438 |
+
def get_sources():
|
439 |
+
return ["huggingface" if hf_checkbox.value else "", "smithery" if smithery_checkbox.value else ""]
|
440 |
+
|
441 |
+
def handle_keyword_mcp_search(query: str, hf: bool, sm: bool, limit: int) -> Dict:
|
442 |
+
"""
|
443 |
+
Handle keyword-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
444 |
+
|
445 |
+
Args:
|
446 |
+
query (str): The search query string to find matching MCP servers
|
447 |
+
hf (bool): Whether to include Hugging Face Spaces in the search (converted to "huggingface" string if True)
|
448 |
+
sm (bool): Whether to include Smithery in the search (converted to "smithery" string if True)
|
449 |
+
limit (int): Maximum number of results to return per source (default: 3)
|
450 |
+
|
451 |
+
Returns:
|
452 |
+
Dict: A dictionary containing the search results with the following keys:
|
453 |
+
- results: List of found MCP servers
|
454 |
+
- total: Total number of results
|
455 |
+
- search_type: Type of search performed ("keyword")
|
456 |
+
"""
|
457 |
+
return keyword_search(
|
458 |
+
query,
|
459 |
+
["huggingface" if hf else "", "smithery" if sm else ""],
|
460 |
+
int(limit)
|
461 |
+
)
|
462 |
+
|
463 |
+
def handle_embedding_mcp_search(query: str, hf: bool, sm: bool, limit: int) -> Dict:
|
464 |
+
"""
|
465 |
+
Handle semantic embedding-based search for MCP servers across selected sources. If the client (such as Cursor or Claude) encounters a task it cannot handle, it can use MCP to search for other tools that can.
|
466 |
+
|
467 |
+
Args:
|
468 |
+
query (str): The natural language search query to find semantically similar MCP servers
|
469 |
+
hf (bool): Whether to include Hugging Face Spaces in the search (converted to "huggingface" string if True)
|
470 |
+
sm (bool): Whether to include Smithery in the search (converted to "smithery" string if True)
|
471 |
+
limit (int): Maximum number of results to return per source (default: 3)
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
Dict: A dictionary containing the search results with the following keys:
|
475 |
+
- results: List of found MCP servers with similarity scores
|
476 |
+
- total: Total number of results
|
477 |
+
- search_type: Type of search performed ("embedding")
|
478 |
+
"""
|
479 |
+
return embedding_search(
|
480 |
+
query,
|
481 |
+
["huggingface" if hf else "", "smithery" if sm else ""],
|
482 |
+
int(limit)
|
483 |
+
)
|
484 |
+
|
485 |
+
keyword_search_button.click(
|
486 |
+
fn=handle_keyword_mcp_search,
|
487 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
488 |
+
outputs=results_output
|
489 |
+
)
|
490 |
+
|
491 |
+
embedding_search_button.click(
|
492 |
+
fn=handle_embedding_mcp_search,
|
493 |
+
inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
494 |
+
outputs=results_output
|
495 |
+
)
|
496 |
+
|
497 |
+
# query_input.submit(
|
498 |
+
# fn=handle_embedding_search,
|
499 |
+
# inputs=[query_input, hf_checkbox, smithery_checkbox, result_limit],
|
500 |
+
# outputs=results_output
|
501 |
+
# )
|
502 |
+
|
503 |
+
if __name__ == "__main__":
|
504 |
+
demo.launch(mcp_server=True)
|