File size: 10,038 Bytes
77c658d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from smolagents import CodeAgent, Tool
import os
import time
import requests
import re
from typing import Dict, List, Optional, Any
from smolagents.models import Model
from smolagents.default_tools import DuckDuckGoSearchTool, FinalAnswerTool
from dotenv import load_dotenv
import os
from myTools.ExtractWikipediaSection import ExtractWikipediaSection
from myTools.ExtractWebContentWithSelenium import ExtractWebContentWithSelenium
from myTools.GetPlaceholderImageTool import GetPlaceholderImageTool
from myTools.GetSVG import GetSVG
from myTools.GetSVGList import GetSVGList
from myTools.GetLogo import GetLogo
load_dotenv()
api_key = os.getenv("MistralApiKey")
class ChatMessage:
def __init__(self, role: str, content: str):
self.role = role
self.content = content
self.raw = None
@classmethod
def from_dict(cls, message_dict: Dict[str, str]) -> 'ChatMessage':
return cls(role=message_dict['role'], content=message_dict['content'])
def __repr__(self):
return f"ChatMessage(role={self.role}, content={self.content})"
class MistralClient:
def __init__(self, api_key: str, api_base: str = "https://api.mistral.ai"):
self.api_key = api_key
self.api_base = api_base
def generate(self, model_id: str, messages: List[Dict[str, str]], **kwargs):
url = f"{self.api_base}/v1/chat/completions"
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
data = {
"model": model_id,
"messages": messages,
"temperature": 0.7,
"max_tokens": 4096,
**kwargs
}
retries = 5
backoff = 2.0
for attempt in range(1, retries + 1):
response = requests.post(url, headers=headers, json=data)
if response.status_code == 429:
print(f"[429] Trop de requêtes - tentative {attempt}/{retries}, attente {backoff}s...")
time.sleep(backoff)
backoff *= 2
continue
try:
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
print(f"[ERREUR] HTTP {response.status_code}: {e}")
raise e
raise RuntimeError(f"Échec après {retries} tentatives (429 ou autres erreurs)")
class MistralApiModel(Model):
"""A class to interact with Mistral's API for language model interaction."""
def __init__(
self,
model_id: str,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
**kwargs,
):
super().__init__(**kwargs)
self.model_id = model_id
self.api_key = api_key
self.api_base = api_base or "https://api.mistral.ai"
self.client = MistralClient(api_key=self.api_key, api_base=self.api_base)
def generate(
self,
messages: List[Dict[str, str]],
**kwargs,
) -> ChatMessage:
return self.__call__(messages=messages, **kwargs)
def __call__(
self,
messages: List[Dict[str, str]],
stop_sequences: Optional[List[str]] = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
**kwargs,
)
response = self.client.generate(model_id=self.model_id, **completion_kwargs)
message = ChatMessage.from_dict(response['choices'][0]['message'])
message.raw = response
usage = response.get('usage', {})
message.token_usage = type('TokenUsage', (), {
"input_tokens": usage.get("prompt_tokens", 0),
"output_tokens": usage.get("completion_tokens", 0),
"total_tokens": usage.get("total_tokens", 0)
})()
return message
class HektoreAgent:
def __init__(self):
print("Agent initialized.")
def __call__(self, section: str, brief: str, colorOne: str, colorTwo: str, language: str, company_name: str, current_html: str = "", additional_args: dict = {}) -> str:
print(f"Agent received brief : {brief}...")
print(f"Additional args received : {additional_args}...")
all_tools = [
GetPlaceholderImageTool(),
ExtractWebContentWithSelenium(),
DuckDuckGoSearchTool(),
GetSVG(),
GetSVGList(),
GetLogo(),
FinalAnswerTool()
]
marketing_tools = [
ExtractWebContentWithSelenium(),
DuckDuckGoSearchTool(),
FinalAnswerTool()
]
model = MistralApiModel(
model_id="codestral-2501",
api_base="https://api.mistral.ai",
api_key=api_key
)
marketing_agent = CodeAgent(
model=model,
name="MarketingSEOExpert",
description="Specialist in marketing web and SEO, generate powerful content with impact. Can't generate HTML, juste generate raw text.",
tools=marketing_tools,
additional_authorized_imports=[
"geopandas",
"plotly",
"shapely",
"json",
"pandas",
"numpy",
"time",
"openpyxl",
"pdfminer",
"pdfminer.six",
"PyPDF2",
"io",
"open",
"librosa",
"bs4",
"os",
"builtins.open",
"builtins.write",
"PyGithub",
"requests"
],
verbosity_level=2,
#final_answer_checks=[check_reasoning],
max_steps=15,
)
manager_agent = CodeAgent(
model=model,
tools=all_tools,
#managed_agents=[marketing_agent],
additional_authorized_imports=[
"geopandas",
"plotly",
"shapely",
"json",
"pandas",
"numpy",
"time",
"openpyxl",
"pdfminer",
"pdfminer.six",
"PyPDF2",
"io",
"open",
"librosa",
"bs4",
"os",
"builtins.open",
"builtins.write",
"PyGithub",
"requests"
],
planning_interval=10,
verbosity_level=2,
#final_answer_checks=[check_reasoning],
max_steps=100,
)
prompt = f"""
You are a professional AI website generator.
Your job is to build a rich, modern, and impressive HTML + TailwindCSS, using semantic HTML5 and responsive design.
You will build the website section by section. Only output the HTML markup for the current section.
The content text must be awesome and very very rich.
⚠️ Do not output any <html>, <head>, <body>, or <!DOCTYPE> tags.
⚠️ Only write the core section content.
The name or the company is : {company_name}
The website is about : {brief}
Language of the website : {language}
You are encouraged to use advanced design elements and modern layout ideas.
We need a lot of text in each section. All text must be SEO compliant. We need Call to action.
Develop this section :
{section}
**Styling and layout**:
- Use Tailwind utility classes
- Use Tailwind's `container`, `grid`, `flex`, `gap`, `rounded`, `shadow`, `text-*`, `bg-*` utilities
- Add responsive breakpoints (`sm:`, `md:`, `lg:`) where needed
- Add hover/focus/transition effects for buttons and cards
- Add a fixed header if relevant
- The CTA text must be impactful and very short
- Use these 2 colors : Primary : {colorOne} and secondary : {colorTwo}
- Don't use join in python to build multiple block in html section
- Use TailwindCSS via CDN:
`<script src="https://cdn.tailwindcss.com"></script>`
**Extras (encouraged but optional)**:
- Use Alpine.js for interactions (mobile nav, carousel, etc.)
- Add animation classes (`transition`, `duration-300`, `ease-in-out`)
- Use SVG separators or background patterns
- Include meta tags for SEO, accessibility attributes, and semantic labels
- Use real picture, no lorem ipsum.
You may use Alpine.js for dynamic UI behavior (e.g., toggles, mobile menus, tabs).
Load it via CDN:
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/cdn.min.js" defer></script>
You may use Swiper.js for testimonials or logo sliders:
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/swiper@11/swiper-bundle.min.css" />
<script src="https://cdn.jsdelivr.net/npm/swiper@11/swiper-bundle.min.js"></script>
You may use animate.css (Animatation) for smooth animations :
<link
rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.1.1/animate.min.css"
/>
You may use Micromodal.js (Modal) for simple modal :
<script src="https://unpkg.com/micromodal/dist/micromodal.min.js"></script>
The page should look ready to present to enterprise clients. Do not oversimplify. No `Lorem ipsum`. Write realistic, sharp content. Only output the HTML for this section. Do not include <html>, <head>, or <body>. Do not include DOCTYPE.
"""
result = manager_agent.run(task=prompt, additional_args=additional_args)
return result
|