from smolagents import CodeAgent, Tool import os import time import requests import re from typing import Dict, List, Optional, Any from smolagents.models import Model from smolagents.default_tools import DuckDuckGoSearchTool, FinalAnswerTool from dotenv import load_dotenv import os from myTools.ExtractWikipediaSection import ExtractWikipediaSection from myTools.ExtractWebContentWithSelenium import ExtractWebContentWithSelenium from myTools.GetPlaceholderImageTool import GetPlaceholderImageTool from myTools.GetSVG import GetSVG from myTools.GetSVGList import GetSVGList from myTools.GetLogo import GetLogo load_dotenv() api_key = os.getenv("MistralApiKey") class ChatMessage: def __init__(self, role: str, content: str): self.role = role self.content = content self.raw = None @classmethod def from_dict(cls, message_dict: Dict[str, str]) -> 'ChatMessage': return cls(role=message_dict['role'], content=message_dict['content']) def __repr__(self): return f"ChatMessage(role={self.role}, content={self.content})" class MistralClient: def __init__(self, api_key: str, api_base: str = "https://api.mistral.ai"): self.api_key = api_key self.api_base = api_base def generate(self, model_id: str, messages: List[Dict[str, str]], **kwargs): url = f"{self.api_base}/v1/chat/completions" headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json" } data = { "model": model_id, "messages": messages, "temperature": 0.7, "max_tokens": 4096, **kwargs } retries = 5 backoff = 2.0 for attempt in range(1, retries + 1): response = requests.post(url, headers=headers, json=data) if response.status_code == 429: print(f"[429] Trop de requêtes - tentative {attempt}/{retries}, attente {backoff}s...") time.sleep(backoff) backoff *= 2 continue try: response.raise_for_status() return response.json() except requests.exceptions.HTTPError as e: print(f"[ERREUR] HTTP {response.status_code}: {e}") raise e raise RuntimeError(f"Échec après {retries} tentatives (429 ou autres erreurs)") class MistralApiModel(Model): """A class to interact with Mistral's API for language model interaction.""" def __init__( self, model_id: str, api_key: Optional[str] = None, api_base: Optional[str] = None, **kwargs, ): super().__init__(**kwargs) self.model_id = model_id self.api_key = api_key self.api_base = api_base or "https://api.mistral.ai" self.client = MistralClient(api_key=self.api_key, api_base=self.api_base) def generate( self, messages: List[Dict[str, str]], **kwargs, ) -> ChatMessage: return self.__call__(messages=messages, **kwargs) def __call__( self, messages: List[Dict[str, str]], stop_sequences: Optional[List[str]] = None, **kwargs, ) -> ChatMessage: completion_kwargs = self._prepare_completion_kwargs( messages=messages, stop_sequences=stop_sequences, **kwargs, ) response = self.client.generate(model_id=self.model_id, **completion_kwargs) message = ChatMessage.from_dict(response['choices'][0]['message']) message.raw = response usage = response.get('usage', {}) message.token_usage = type('TokenUsage', (), { "input_tokens": usage.get("prompt_tokens", 0), "output_tokens": usage.get("completion_tokens", 0), "total_tokens": usage.get("total_tokens", 0) })() return message class HektoreAgent: def __init__(self): print("Agent initialized.") def __call__(self, section: str, brief: str, colorOne: str, colorTwo: str, language: str, company_name: str, current_html: str = "", additional_args: dict = {}) -> str: print(f"Agent received brief : {brief}...") print(f"Additional args received : {additional_args}...") all_tools = [ GetPlaceholderImageTool(), ExtractWebContentWithSelenium(), DuckDuckGoSearchTool(), GetSVG(), GetSVGList(), GetLogo(), FinalAnswerTool() ] marketing_tools = [ ExtractWebContentWithSelenium(), DuckDuckGoSearchTool(), FinalAnswerTool() ] model = MistralApiModel( model_id="codestral-2501", api_base="https://api.mistral.ai", api_key=api_key ) marketing_agent = CodeAgent( model=model, name="MarketingSEOExpert", description="Specialist in marketing web and SEO, generate powerful content with impact. Can't generate HTML, juste generate raw text.", tools=marketing_tools, additional_authorized_imports=[ "geopandas", "plotly", "shapely", "json", "pandas", "numpy", "time", "openpyxl", "pdfminer", "pdfminer.six", "PyPDF2", "io", "open", "librosa", "bs4", "os", "builtins.open", "builtins.write", "PyGithub", "requests" ], verbosity_level=2, #final_answer_checks=[check_reasoning], max_steps=15, ) manager_agent = CodeAgent( model=model, tools=all_tools, #managed_agents=[marketing_agent], additional_authorized_imports=[ "geopandas", "plotly", "shapely", "json", "pandas", "numpy", "time", "openpyxl", "pdfminer", "pdfminer.six", "PyPDF2", "io", "open", "librosa", "bs4", "os", "builtins.open", "builtins.write", "PyGithub", "requests" ], planning_interval=10, verbosity_level=2, #final_answer_checks=[check_reasoning], max_steps=100, ) prompt = f""" You are a professional AI website generator. Your job is to build a rich, modern, and impressive HTML + TailwindCSS, using semantic HTML5 and responsive design. You will build the website section by section. Only output the HTML markup for the current section. The content text must be awesome and very very rich. ⚠️ Do not output any , , , or tags. ⚠️ Only write the core section content. The name or the company is : {company_name} The website is about : {brief} Language of the website : {language} You are encouraged to use advanced design elements and modern layout ideas. We need a lot of text in each section. All text must be SEO compliant. We need Call to action. Develop this section : {section} **Styling and layout**: - Use Tailwind utility classes - Use Tailwind's `container`, `grid`, `flex`, `gap`, `rounded`, `shadow`, `text-*`, `bg-*` utilities - Add responsive breakpoints (`sm:`, `md:`, `lg:`) where needed - Add hover/focus/transition effects for buttons and cards - Add a fixed header if relevant - The CTA text must be impactful and very short - Use these 2 colors : Primary : {colorOne} and secondary : {colorTwo} - Don't use join in python to build multiple block in html section - Use TailwindCSS via CDN: `` **Extras (encouraged but optional)**: - Use Alpine.js for interactions (mobile nav, carousel, etc.) - Add animation classes (`transition`, `duration-300`, `ease-in-out`) - Use SVG separators or background patterns - Include meta tags for SEO, accessibility attributes, and semantic labels - Use real picture, no lorem ipsum. You may use Alpine.js for dynamic UI behavior (e.g., toggles, mobile menus, tabs). Load it via CDN: You may use Swiper.js for testimonials or logo sliders: You may use animate.css (Animatation) for smooth animations : You may use Micromodal.js (Modal) for simple modal : The page should look ready to present to enterprise clients. Do not oversimplify. No `Lorem ipsum`. Write realistic, sharp content. Only output the HTML for this section. Do not include , , or . Do not include DOCTYPE. """ result = manager_agent.run(task=prompt, additional_args=additional_args) return result