Abid Ali Awan
Update README.md to enhance project description, setup instructions, and connection details for the Code Analysis MCP server. Adjusted title, emoji, and SDK version, and clarified usage with Cursor AI.
53e0bdc
import json | |
import os | |
from typing import Any, Dict | |
from anthropic import Anthropic | |
from mistralai import Mistral | |
from openai import OpenAI | |
from pydantic import BaseModel, ValidationError | |
# ------------------------------------------------------------------ # | |
# Configuration | |
# ------------------------------------------------------------------ # | |
DEFAULT_SCORES: Dict[str, Any] = { | |
"vulnerability_score": 0, | |
"style_score": 0, | |
"quality_score": 0, | |
} | |
ANALYSIS_PROMPT_TEMPLATE = ( | |
"Analyze the following code for vulnerabilities, style, and quality " | |
"and return **only** a JSON object with keys " | |
"'vulnerability_score', 'style_score', and 'quality_score' " | |
"(each 0β100):\n```python\n{code}\n```" | |
) | |
SYSTEM_MESSAGES = { | |
"anthropic": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.", | |
"mistral": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.", | |
"openai": "You are a secure-coding assistant. Assess code quality, style and vulnerabilities.", | |
} | |
MODELS = { | |
"anthropic": "claude-sonnet-4-20250514", | |
"mistral": "mistral-medium-2505", | |
"openai": "gpt-4.1-2025-04-14", | |
} | |
REQUIRED_KEYS = ("vulnerability_score", "style_score", "quality_score") | |
# ------------------------------------------------------------------ # | |
# Helpers | |
# ------------------------------------------------------------------ # | |
class CodeAnalysisResult(BaseModel): | |
vulnerability_score: int | |
style_score: int | |
quality_score: int | |
def _safe_json_loads(raw: str) -> Dict[str, Any]: | |
""" | |
Best-effort JSON parsing β fall back to DEFAULT_SCORES on failure. | |
""" | |
try: | |
return json.loads(raw) | |
except json.JSONDecodeError: | |
return DEFAULT_SCORES.copy() | |
def _ensure_all_keys(d: dict, default: int = 0) -> dict: | |
""" | |
Return a dict that has every REQUIRED_KEYS entry. | |
Missing keys are added with `default`. | |
Non-required keys are discarded. | |
""" | |
return {key: int(d.get(key, default)) for key in REQUIRED_KEYS} | |
# ------------------------------------------------------------------ # | |
# Provider wrappers | |
# ------------------------------------------------------------------ # | |
def analyze_code_anthropic(code: str) -> dict: | |
if not code: | |
return _ensure_all_keys({}) | |
try: | |
client = Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"]) | |
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code) | |
tools = [ | |
{ | |
"name": "code_scores", | |
"description": "Return ONLY the three integer scores (0-100).", | |
"input_schema": { | |
"type": "object", | |
"properties": { | |
"vulnerability_score": { | |
"type": "integer", | |
"minimum": 0, | |
"maximum": 100, | |
}, | |
"style_score": { | |
"type": "integer", | |
"minimum": 0, | |
"maximum": 100, | |
}, | |
"quality_score": { | |
"type": "integer", | |
"minimum": 0, | |
"maximum": 100, | |
}, | |
}, | |
"required": list(REQUIRED_KEYS), | |
"additionalProperties": False, | |
}, | |
} | |
] | |
resp = client.messages.create( | |
model=MODELS["anthropic"], | |
messages=[{"role": "user", "content": prompt}], | |
system=SYSTEM_MESSAGES["anthropic"], | |
tools=tools, | |
tool_choice={"type": "tool", "name": "code_scores"}, | |
max_tokens=130, | |
temperature=0, | |
) | |
tool_call = next(c for c in resp.content if c.type == "tool_use") | |
return _ensure_all_keys(tool_call.input) | |
except Exception as exc: | |
out = _ensure_all_keys({}) | |
out["error"] = f"Anthropic API error: {exc}" | |
return out | |
def analyze_code_mistral(code: str) -> Dict[str, Any]: | |
if not code: | |
return DEFAULT_SCORES.copy() | |
try: | |
client = Mistral(api_key=os.environ["MISTRAL_API_KEY"]) | |
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code) | |
resp = client.chat.complete( | |
model=MODELS["mistral"], | |
messages=[ | |
{"role": "system", "content": SYSTEM_MESSAGES["mistral"]}, | |
{"role": "user", "content": prompt}, | |
], | |
response_format={"type": "json_object"}, | |
) | |
return _safe_json_loads(resp.choices[0].message.content) | |
except Exception as exc: | |
result = DEFAULT_SCORES.copy() | |
result["error"] = f"Mistral API error: {exc}" | |
return result | |
def analyze_code_openai(code: str) -> Dict[str, Any]: | |
if not code: | |
return DEFAULT_SCORES.copy() | |
try: | |
client = OpenAI() # uses OPENAI_API_KEY from env | |
prompt = ANALYSIS_PROMPT_TEMPLATE.format(code=code) | |
resp = client.chat.completions.create( | |
model=MODELS["openai"], | |
messages=[ | |
{"role": "system", "content": SYSTEM_MESSAGES["openai"]}, | |
{"role": "user", "content": prompt}, | |
], | |
response_format={"type": "json_object"}, | |
) | |
# Validate via Pydantic (optional but nice) | |
parsed = _safe_json_loads(resp.choices[0].message.content) | |
try: | |
validated = CodeAnalysisResult(**parsed) | |
return validated.model_dump() | |
except ValidationError: | |
# If model returns extra fields or wrong types, fall back to raw | |
return parsed | |
except Exception as exc: | |
result = DEFAULT_SCORES.copy() | |
result["error"] = f"OpenAI API error: {exc}" | |
return result | |
# ------------------------------------------------------------------ # | |
# Aggregator | |
# ------------------------------------------------------------------ # | |
def code_analysis_score(code: str) -> Dict[str, Any]: | |
""" | |
Analyzes the provided code string using multiple AI providers and returns an | |
averaged score across vulnerability, style, and quality. | |
Args: | |
code: The code string to analyze. | |
Returns: | |
A dictionary containing the averaged vulnerability, style, and quality scores, | |
or an error message if all providers fail. | |
""" | |
if not code: | |
return DEFAULT_SCORES.copy() | |
scores_list = [ | |
analyze_code_anthropic(code), | |
analyze_code_mistral(code), | |
analyze_code_openai(code), | |
] | |
valid = [s for s in scores_list if "error" not in s] | |
if not valid: | |
result = DEFAULT_SCORES.copy() | |
result["error"] = "All API providers failed" | |
return result | |
# Average | |
averaged = { | |
"vulnerability_score": sum(s["vulnerability_score"] for s in valid) | |
// len(valid), | |
"style_score": sum(s["style_score"] for s in valid) // len(valid), | |
"quality_score": sum(s["quality_score"] for s in valid) // len(valid), | |
} | |
return averaged | |
# ------------------------------------------------------------------ # | |
# Demo / quick test | |
# ------------------------------------------------------------------ # | |
if __name__ == "__main__": | |
sample = """ | |
def example_function(x): | |
if x is None: | |
return "Error" | |
return x * 2 | |
""" | |
print("Anthropic β", analyze_code_anthropic(sample)) | |
print("Mistral β", analyze_code_mistral(sample)) | |
print("OpenAI β", analyze_code_openai(sample)) | |
print("AVERAGED β", code_analysis_score(sample)) | |