File size: 10,073 Bytes
94ecb74
 
 
 
 
 
 
 
 
 
4d85aba
94ecb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d85aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94ecb74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
"""
🧠 LLM Client for CourseCrafter AI

Multi-provider LLM client with streaming support.
"""

import json
from typing import Dict, List, Any, Optional, AsyncGenerator
from dataclasses import dataclass
from abc import ABC, abstractmethod
import os

import openai
import anthropic
import google.generativeai as genai

from ..types import LLMProvider, StreamChunk
from ..utils.config import config


@dataclass
class Message:
    """Standard message format"""
    role: str  # "system", "user", "assistant"
    content: str


class BaseLLMClient(ABC):
    """Abstract base class for LLM clients"""

    def __init__(self, provider: LLMProvider):
        self.provider = provider
        self.config = config.get_llm_config(provider)

    @abstractmethod
    async def generate_stream(self, messages: List[Message]) -> AsyncGenerator[StreamChunk, None]:
        """Generate streaming response"""
        pass


class OpenAIClient(BaseLLMClient):
    """OpenAI client with streaming support (works with OpenAI and compatible endpoints)"""

    def __init__(self, provider: LLMProvider = "openai"):
        super().__init__(provider)

        # Build client kwargs
        client_kwargs = {
            "api_key": self.config.api_key or "dummy",
            "timeout": self.config.timeout
        }

        # Add base_url for compatible endpoints
        if hasattr(self.config, 'base_url') and self.config.base_url:
            client_kwargs["base_url"] = self.config.base_url

        self.client = openai.AsyncOpenAI(**client_kwargs)

    def _format_messages(self, messages: List[Message]) -> List[Dict[str, Any]]:
        """Format messages for OpenAI"""
        return [{"role": msg.role, "content": msg.content} for msg in messages]

    async def generate_stream(self, messages: List[Message]) -> AsyncGenerator[StreamChunk, None]:
        """Generate streaming response from OpenAI"""

        formatted_messages = self._format_messages(messages)

        kwargs = {
            "model": self.config.model,
            "messages": formatted_messages,
            "temperature": self.config.temperature,
            "stream": True
        }

        if self.config.max_tokens:
            kwargs["max_tokens"] = self.config.max_tokens

        try:
            stream = await self.client.chat.completions.create(**kwargs)

            async for chunk in stream:
                if chunk.choices and chunk.choices[0].delta:
                    delta = chunk.choices[0].delta

                    if delta.content:
                        yield StreamChunk(
                            type="text",
                            content=delta.content
                        )

        except Exception as e:
            yield StreamChunk(
                type="error",
                content=f"OpenAI API error: {str(e)}"
            )




class AnthropicClient(BaseLLMClient):
    """Anthropic client with streaming support"""

    def __init__(self):
        super().__init__("anthropic")
        self.client = anthropic.AsyncAnthropic(
            api_key=self.config.api_key,
            timeout=self.config.timeout
        )

    def _format_messages(self, messages: List[Message]) -> tuple[List[Dict[str, Any]], Optional[str]]:
        """Format messages for Anthropic"""
        formatted = []
        system_message = None

        for msg in messages:
            if msg.role == "system":
                system_message = msg.content
            elif msg.role in ["user", "assistant"]:
                formatted.append({
                    "role": msg.role,
                    "content": msg.content
                })

        return formatted, system_message

    async def generate_stream(self, messages: List[Message]) -> AsyncGenerator[StreamChunk, None]:
        """Generate streaming response from Anthropic"""

        formatted_messages, system_message = self._format_messages(messages)

        kwargs = {
            "model": self.config.model,
            "messages": formatted_messages,
            "temperature": self.config.temperature,
            "stream": True
        }

        if system_message:
            kwargs["system"] = system_message

        if self.config.max_tokens:
            kwargs["max_tokens"] = self.config.max_tokens

        try:
            stream = await self.client.messages.create(**kwargs)

            async for chunk in stream:
                if chunk.type == "content_block_delta":
                    if hasattr(chunk.delta, 'text'):
                        yield StreamChunk(
                            type="text",
                            content=chunk.delta.text
                        )

        except Exception as e:
            yield StreamChunk(
                type="error",
                content=f"Anthropic API error: {str(e)}"
            )


class GoogleClient(BaseLLMClient):
    """Google Gemini client with streaming support"""

    def __init__(self):
        super().__init__("google")
        genai.configure(api_key=self.config.api_key)
        self.model = genai.GenerativeModel(self.config.model)

    def _format_messages(self, messages: List[Message]) -> List[Dict[str, Any]]:
        """Format messages for Google"""
        formatted = []

        for msg in messages:
            if msg.role == "system":
                # Google handles system messages differently
                formatted.append({
                    "role": "user",
                    "parts": [{"text": f"System: {msg.content}"}]
                })
            elif msg.role == "user":
                formatted.append({
                    "role": "user",
                    "parts": [{"text": msg.content}]
                })
            elif msg.role == "assistant":
                formatted.append({
                    "role": "model",
                    "parts": [{"text": msg.content}]
                })

        return formatted

    async def generate_stream(self, messages: List[Message]) -> AsyncGenerator[StreamChunk, None]:
        """Generate streaming response from Google"""

        formatted_messages = self._format_messages(messages)

        generation_config = {
            "temperature": self.config.temperature,
        }

        if self.config.max_tokens:
            generation_config["max_output_tokens"] = self.config.max_tokens

        try:
            response = await self.model.generate_content_async(
                formatted_messages,
                generation_config=generation_config,
                stream=True
            )

            async for chunk in response:
                if chunk.text:
                    yield StreamChunk(
                        type="text",
                        content=chunk.text
                    )

        except Exception as e:
            yield StreamChunk(
                type="error",
                content=f"Google API error: {str(e)}"
            )


class LlmClient:
    """
    Unified LLM client that manages multiple providers
    """

    def __init__(self):
        self.clients = {}
        self._initialize_clients()

    def _initialize_clients(self):
        """Initialize available LLM clients"""
        available_providers = config.get_available_llm_providers()

        for provider in available_providers:
            try:
                if provider in ["openai", "openai_compatible"]:
                    self.clients[provider] = OpenAIClient(provider)
                elif provider == "anthropic":
                    self.clients[provider] = AnthropicClient()
                elif provider == "google":
                    self.clients[provider] = GoogleClient()

                print(f"βœ… Initialized {provider} client")
            except Exception as e:
                print(f"❌ Failed to initialize {provider} client: {e}")

    def update_provider_config(self, provider: str, api_key: str = None, **kwargs):
        """Update configuration for a specific provider and reinitialize client"""
        
        # Update environment variables
        if provider == "openai" and api_key:
            os.environ["OPENAI_API_KEY"] = api_key
        elif provider == "anthropic" and api_key:
            os.environ["ANTHROPIC_API_KEY"] = api_key
        elif provider == "google" and api_key:
            os.environ["GOOGLE_API_KEY"] = api_key
        elif provider == "openai_compatible":
            if api_key:
                os.environ["OPENAI_COMPATIBLE_API_KEY"] = api_key
            if kwargs.get("base_url"):
                os.environ["OPENAI_COMPATIBLE_BASE_URL"] = kwargs["base_url"]
            if kwargs.get("model"):
                os.environ["OPENAI_COMPATIBLE_MODEL"] = kwargs["model"]
        
        # Reinitialize the specific client
        try:
            if provider in ["openai", "openai_compatible"]:
                self.clients[provider] = OpenAIClient(provider)
            elif provider == "anthropic":
                self.clients[provider] = AnthropicClient()
            elif provider == "google":
                self.clients[provider] = GoogleClient()
            
            print(f"βœ… Updated and reinitialized {provider} client")
            return True
        except Exception as e:
            print(f"❌ Failed to reinitialize {provider} client: {e}")
            return False

    def get_available_providers(self) -> List[LLMProvider]:
        """Get list of available providers"""
        return list(self.clients.keys())

    def get_client(self, provider: LLMProvider) -> BaseLLMClient:
        """Get client for specific provider"""
        if provider not in self.clients:
            raise ValueError(f"Provider {provider} not available")
        return self.clients[provider]

    async def generate_stream(
        self,
        provider: LLMProvider,
        messages: List[Message]
    ) -> AsyncGenerator[StreamChunk, None]:
        """Generate streaming response using specified provider"""
        client = self.get_client(provider)
        async for chunk in client.generate_stream(messages):
            yield chunk