File size: 16,361 Bytes
685adc8 aad7490 685adc8 aad7490 685adc8 f14b334 685adc8 07de967 685adc8 1d69af8 685adc8 f14b334 685adc8 f14b334 685adc8 f14b334 685adc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import gradio as gr
import pandas as pd
from utils.google_genai_llm import get_response, generate_with_gemini
from prompts.requirements_gathering import requirements_gathering_system_prompt
from prompts.planning import hf_query_gen_prompt
from PIL import Image
import os
import tempfile
import traceback
import hashlib
# Import Marker for document processing
try:
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered
MARKER_AVAILABLE = True
except ImportError:
MARKER_AVAILABLE = False
print("Warning: Marker library not available. PDF, PPT, and DOCX processing will be limited.")
def get_file_hash(file_path):
"""Generate a hash of the file for caching purposes"""
try:
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
return file_hash
except Exception:
return None
def extract_text_with_marker(file_path):
"""Extract text from PDF, PPT, or DOCX using Marker"""
if not MARKER_AVAILABLE:
return "Marker library not available for document processing.", ""
try:
# Create converter with model artifacts
converter = PdfConverter(
artifact_dict=create_model_dict(),
)
# Convert document
rendered = converter(file_path)
# Extract text from rendered output
text, _, images = text_from_rendered(rendered)
# Get basic stats
word_count = len(text.split())
char_count = len(text)
stats = f"Extracted text ({word_count} words, {char_count} characters)"
return stats, text
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
return error_msg, ""
def process_user_input(message, history, uploaded_files, file_cache):
"""Process user input and generate AI response using requirements gathering prompt"""
# Build conversation history from chat history
conversation_history = ""
if history:
for i, (user_msg, ai_msg) in enumerate(history):
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
# Add file information to conversation if files are uploaded
if uploaded_files:
file_info = f"\n[UPLOADED_FILES]\n"
new_file_cache = file_cache.copy() if file_cache else {}
for file_path in uploaded_files:
try:
file_name = file_path.split('/')[-1]
file_extension = os.path.splitext(file_name)[1].lower()
file_hash = get_file_hash(file_path)
cache_key = f"{file_name}_{file_hash}"
# Handle CSV files
if file_extension == '.csv':
df = pd.read_csv(file_path)
file_info += f"- {file_name}: CSV file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle Excel files
elif file_extension in ['.xlsx', '.xls']:
df = pd.read_excel(file_path)
file_info += f"- {file_name}: Excel file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle document files with Marker (PDF, PPT, DOCX)
elif file_extension in ['.pdf', '.ppt', '.pptx', '.doc', '.docx']:
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
# Check if file is already processed and cached
if cache_key in new_file_cache:
# Use cached text
extraction_stats = new_file_cache[cache_key]['stats']
extracted_text = new_file_cache[cache_key]['text']
status = "(cached)"
else:
# Process new file with Marker
extraction_stats, extracted_text = extract_text_with_marker(file_path)
# Cache the results
new_file_cache[cache_key] = {
'stats': extraction_stats,
'text': extracted_text,
'file_name': file_name,
'file_path': file_path
}
status = "(newly processed)"
# Determine document type
if file_extension == '.pdf':
doc_type = "PDF document"
elif file_extension in ['.ppt', '.pptx']:
doc_type = "PowerPoint presentation"
else:
doc_type = "Word document"
file_info += f"- {file_name}: {doc_type}, Size: {file_size_mb} MB {status}\n"
file_info += f" Content: {extraction_stats}\n"
# Include extracted text in conversation context for better AI understanding
if extracted_text and len(extracted_text.strip()) > 0:
# Truncate very long texts for context (keep first 2000 chars)
text_preview = extracted_text[:200000] + "..." if len(extracted_text) > 200000 else extracted_text
file_info += f" Text Preview: {text_preview}\n"
# Handle image files
elif file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp']:
with Image.open(file_path) as img:
width, height = img.size
mode = img.mode
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
file_info += f"- {file_name}: {file_extension.upper()[1:]} image file\n"
file_info += f" Dimensions: {width}x{height} pixels, Mode: {mode}, Size: {file_size_mb} MB\n"
# Handle JSON files
elif file_extension == '.json':
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: JSON file, Size: {file_size_kb} KB\n"
# Handle text files
elif file_extension == '.txt':
with open(file_path, 'r', encoding='utf-8') as f:
lines = len(f.readlines())
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: Text file with {lines} lines, Size: {file_size_kb} KB\n"
# Handle other files
else:
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: File uploaded, Size: {file_size_kb} KB\n"
except Exception as e:
file_info += f"- {file_path.split('/')[-1]}: File uploaded (unable to preview: {str(e)})\n"
print(f"Error processing file {file_path}: {traceback.format_exc()}")
conversation_history += file_info
# Update the cache
file_cache.update(new_file_cache)
# Format the prompt with conversation history and current query
formatted_prompt = requirements_gathering_system_prompt.format(
conversation_history=conversation_history,
query=message
)
# Get AI response
ai_response = get_response(formatted_prompt)
return ai_response, file_cache
def chat_interface(message, history, uploaded_files, file_cache):
"""Main chat interface function"""
# Get AI response with updated cache
ai_response, updated_cache = process_user_input(message, history, uploaded_files, file_cache)
# Add to history
history.append((message, ai_response))
return history, history, "", updated_cache
def clear_chat():
"""Clear the chat history and file cache"""
return [], [], {}
def upload_file_handler(files):
"""Handle file uploads"""
if files:
return files
return []
def generate_plan(history, file_cache):
"""Generate a plan using the planning prompt and Gemini API"""
# Build conversation history
conversation_history = ""
if history:
for user_msg, ai_msg in history:
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
# Format the prompt
formatted_prompt = hf_query_gen_prompt + "\n\n" + conversation_history
# Get plan from Gemini
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
return plan
# Custom CSS for a sleek design
custom_css = """
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
.chat-container {
height: 600px !important;
}
#component-0 {
height: 100vh;
}
.message {
padding: 15px !important;
margin: 10px 0 !important;
border-radius: 15px !important;
}
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
margin-left: 20% !important;
}
.bot-message {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
color: white !important;
margin-right: 20% !important;
}
.upload-area {
border: 2px dashed #4f46e5 !important;
border-radius: 10px !important;
padding: 20px !important;
text-align: center !important;
background: linear-gradient(135deg, #f0f4ff 0%, #e0e7ff 100%) !important;
}
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
}
.btn-secondary {
background: linear-gradient(135deg, #ffeaa7 0%, #fab1a0 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
color: #2d3436 !important;
}
.title {
text-align: center !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 20px !important;
}
.subtitle {
text-align: center !important;
color: #6c757d !important;
font-size: 1.2em !important;
margin-bottom: 30px !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, title="Data Science Requirements Gathering Agent") as app:
# Header
gr.HTML("""
<div class="title">π¬ Data Science Consultant</div>
<div class="subtitle">
Transform your vague ideas into reality
</div>
""")
with gr.Row():
with gr.Column(scale=3):
# Chat interface
chatbot = gr.Chatbot(
label="Requirements Gathering Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
elem_classes=["chat-container"]
)
plan_output = gr.Textbox(
label="Generated Plan",
interactive=False,
visible=True,
lines=10,
max_lines=20
)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
placeholder="Describe your data science project or ask a question...",
label="Your Message",
lines=2,
max_lines=5
)
with gr.Column(scale=1):
send_btn = gr.Button("Send π€", variant="primary", elem_classes=["btn-primary"])
with gr.Column(scale=1):
plan_btn = gr.Button("Generate Plan π", variant="secondary", elem_classes=["btn-secondary"])
with gr.Row():
clear_btn = gr.Button("Clear Chat ποΈ", variant="secondary", elem_classes=["btn-secondary"])
with gr.Column(scale=1):
# File upload section
gr.HTML("<h3 style='text-align: center; color: #4f46e5;'>π Upload Data Files</h3>")
file_upload = gr.File(
label="Upload your files (CSV, Excel, PDF, PPT, DOCX, Images, etc.)",
file_count="multiple",
file_types=[".csv", ".xlsx", ".xls", ".json", ".txt", ".pdf", ".ppt", ".pptx", ".doc", ".docx", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"],
elem_classes=["upload-area"]
)
uploaded_files_display = gr.File(
label="Uploaded Files",
file_count="multiple",
interactive=False,
visible=True
)
# Instructions
gr.HTML("""
<div style="padding: 15px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%);
border-radius: 10px; margin-top: 20px;">
<h4 style="color: #4f46e5; margin-bottom: 10px;">π‘ How it works:</h4>
<ol style="color: #555; font-size: 14px; line-height: 1.6;">
<li>Describe your data science project</li>
<li>Upload your files (data, documents, images)</li>
<li>Answer clarifying questions</li>
<li>Get a complete task specification</li>
</ol>
<p style="color: #666; font-size: 12px; margin-top: 10px;">
π Supports: CSV, Excel, PDF, PowerPoint, Word docs, Images, JSON, Text files
</p>
</div>
""")
# State for conversation history and file cache
chat_history = gr.State([])
file_cache = gr.State({})
# Event handlers
def handle_send(message, history, files, cache):
if message.strip():
new_history, updated_history, cleared_input, updated_cache = chat_interface(message, history, files, cache)
return new_history, updated_history, cleared_input, updated_cache
return history, history, message, cache
# Wire up the interface
send_btn.click(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
msg.submit(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, chat_history, file_cache]
)
plan_btn.click(
generate_plan,
inputs=[chat_history, file_cache],
outputs=[plan_output]
)
file_upload.change(
lambda files: files,
inputs=[file_upload],
outputs=[uploaded_files_display]
)
# Welcome message
app.load(
lambda: [(None, "π Hello! I'm your Data Science Project Agent. I'll help you transform your project ideas into reality .\n\nπ **Let's get started!** Tell me about your data science project or what you're trying to achieve.")],
outputs=[chatbot]
)
if __name__ == "__main__":
app.launch(share=True, show_error=True) |