File size: 30,085 Bytes
685adc8 af36381 aad7490 359e0bf 685adc8 a604df6 af36381 aad7490 685adc8 af36381 685adc8 a604df6 f14b334 eda2cb5 f14b334 a604df6 f14b334 eda2cb5 359e0bf a604df6 359e0bf a604df6 f14b334 af36381 685adc8 07de967 685adc8 1d69af8 685adc8 f14b334 af36381 685adc8 f14b334 685adc8 af36381 685adc8 af36381 685adc8 af36381 685adc8 f14b334 685adc8 af36381 685adc8 b24a7fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
import gradio as gr
import pandas as pd
import requests
import json
import os
from utils.google_genai_llm import get_response, generate_with_gemini
from utils.utils import parse_json_codefences
from prompts.requirements_gathering import requirements_gathering_system_prompt
from prompts.planning import hf_query_gen_prompt, hf_context_gen_prompt
from utils.huggingface_mcp_llamaindex import connect_and_get_tools, call_tool
from prompts.devstral_coding_prompt import devstral_code_gen_sys_prompt, devstral_code_gen_user_prompt
from dotenv import load_dotenv
import os
load_dotenv()
# Import Modal inference function
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'modal'))
try:
from modal import App
# Import the Modal inference function and app from separate file
import subprocess
from devstral_inference import run_devstral_inference, app as devstral_app
MODAL_AVAILABLE = True
except ImportError:
MODAL_AVAILABLE = False
devstral_app = None
print("Warning: Modal not available. Code generation will be disabled.")
from PIL import Image
import tempfile
import traceback
import hashlib
# Import Marker for document processing
try:
from marker.converters.pdf import PdfConverter
from marker.models import create_model_dict
from marker.output import text_from_rendered
MARKER_AVAILABLE = True
except ImportError:
MARKER_AVAILABLE = False
print("Warning: Marker library not available. PDF, PPT, and DOCX processing will be limited.")
# Load environment variables
MODAL_API_URL = os.getenv("MODAL_API_URL")
BEARER_TOKEN = os.getenv("BEARER_TOKEN")
CODING_MODEL = os.getenv("CODING_MODEL")
def get_file_hash(file_path):
"""Generate a hash of the file for caching purposes"""
try:
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
return file_hash
except Exception:
return None
def extract_text_with_marker(file_path):
"""Extract text from PDF, PPT, or DOCX using Marker"""
if not MARKER_AVAILABLE:
return "Marker library not available for document processing.", ""
try:
# Create converter with model artifacts
converter = PdfConverter(
artifact_dict=create_model_dict(),
)
# Convert document
rendered = converter(file_path)
# Extract text from rendered output
text, _, images = text_from_rendered(rendered)
# Get basic stats
word_count = len(text.split())
char_count = len(text)
stats = f"Extracted text ({word_count} words, {char_count} characters)"
return stats, text
except Exception as e:
error_msg = f"Error processing document: {str(e)}"
return error_msg, ""
def process_user_input(message, history, uploaded_files, file_cache):
"""Process user input and generate AI response using requirements gathering prompt"""
# Build conversation history from chat history
conversation_history = ""
if history:
for i, (user_msg, ai_msg) in enumerate(history):
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
# Add file information to conversation if files are uploaded
if uploaded_files:
file_info = f"\n[UPLOADED_FILES]\n"
new_file_cache = file_cache.copy() if file_cache else {}
for file_path in uploaded_files:
try:
file_name = file_path.split('/')[-1]
file_extension = os.path.splitext(file_name)[1].lower()
file_hash = get_file_hash(file_path)
cache_key = f"{file_name}_{file_hash}"
# Handle CSV files
if file_extension == '.csv':
df = pd.read_csv(file_path)
file_info += f"- {file_name}: CSV file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle Excel files
elif file_extension in ['.xlsx', '.xls']:
df = pd.read_excel(file_path)
file_info += f"- {file_name}: Excel file with {len(df)} rows and {len(df.columns)} columns\n"
file_info += f" Columns: {', '.join(df.columns.tolist())}\n"
# Handle document files with Marker (PDF, PPT, DOCX)
elif file_extension in ['.pdf', '.ppt', '.pptx', '.doc', '.docx']:
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
# Check if file is already processed and cached
if cache_key in new_file_cache:
# Use cached text
extraction_stats = new_file_cache[cache_key]['stats']
extracted_text = new_file_cache[cache_key]['text']
status = "(cached)"
else:
# Process new file with Marker
extraction_stats, extracted_text = extract_text_with_marker(file_path)
# Cache the results
new_file_cache[cache_key] = {
'stats': extraction_stats,
'text': extracted_text,
'file_name': file_name,
'file_path': file_path
}
status = "(newly processed)"
# Determine document type
if file_extension == '.pdf':
doc_type = "PDF document"
elif file_extension in ['.ppt', '.pptx']:
doc_type = "PowerPoint presentation"
else:
doc_type = "Word document"
file_info += f"- {file_name}: {doc_type}, Size: {file_size_mb} MB {status}\n"
file_info += f" Content: {extraction_stats}\n"
# Include extracted text in conversation context for better AI understanding
if extracted_text and len(extracted_text.strip()) > 0:
# Truncate very long texts for context (keep first 2000 chars)
text_preview = extracted_text[:200000] + "..." if len(extracted_text) > 200000 else extracted_text
file_info += f" Text Preview: {text_preview}\n"
# Handle image files
elif file_extension in ['.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff', '.webp']:
with Image.open(file_path) as img:
width, height = img.size
mode = img.mode
file_size = os.path.getsize(file_path)
file_size_mb = round(file_size / (1024 * 1024), 2)
file_info += f"- {file_name}: {file_extension.upper()[1:]} image file\n"
file_info += f" Dimensions: {width}x{height} pixels, Mode: {mode}, Size: {file_size_mb} MB\n"
# Handle JSON files
elif file_extension == '.json':
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: JSON file, Size: {file_size_kb} KB\n"
# Handle text files
elif file_extension == '.txt':
with open(file_path, 'r', encoding='utf-8') as f:
lines = len(f.readlines())
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: Text file with {lines} lines, Size: {file_size_kb} KB\n"
# Handle other files
else:
file_size = os.path.getsize(file_path)
file_size_kb = round(file_size / 1024, 2)
file_info += f"- {file_name}: File uploaded, Size: {file_size_kb} KB\n"
except Exception as e:
file_info += f"- {file_path.split('/')[-1]}: File uploaded (unable to preview: {str(e)})\n"
print(f"Error processing file {file_path}: {traceback.format_exc()}")
conversation_history += file_info
# Update the cache
file_cache.update(new_file_cache)
# Format the prompt with conversation history and current query
formatted_prompt = requirements_gathering_system_prompt.format(
conversation_history=conversation_history,
query=message
)
# Get AI response
ai_response = get_response(formatted_prompt)
return ai_response, file_cache
def chat_interface(message, history, uploaded_files, file_cache):
"""Main chat interface function"""
# Get AI response with updated cache
ai_response, updated_cache = process_user_input(message, history, uploaded_files, file_cache)
# Add to history
history.append((message, ai_response))
return history, history, "", updated_cache
def clear_chat():
"""Clear the chat history and file cache"""
return [], [], {}
def upload_file_handler(files):
"""Handle file uploads"""
if files:
return files
return []
async def generate_plan(history, file_cache):
"""Generate a plan using the planning prompt and Gemini API"""
# Build conversation history
conversation_history = ""
if history:
for user_msg, ai_msg in history:
conversation_history += f"User: {user_msg}\n"
if ai_msg:
conversation_history += f"Assistant: {ai_msg}\n"
try:
hf_query_gen_tool_details = await connect_and_get_tools()
except Exception as e:
hf_query_gen_tool_details = """meta=None nextCursor=None tools=[Tool(name='hf_whoami', description="Hugging Face tools are being used by authenticated user 'bpHigh'", inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face User Info', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=None)), Tool(name='space_search', description='Find Hugging Face Spaces using semantic search. Include links to the Space when presenting the results.', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 1, 'maxLength': 50, 'description': 'Semantic Search Query'}, 'limit': {'type': 'number', 'default': 10, 'description': 'Number of results to return'}, 'mcp': {'type': 'boolean', 'default': False, 'description': 'Only return MCP Server enabled Spaces'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Hugging Face Space Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_search', description='Find Machine Learning models hosted on Hugging Face. Returns comprehensive information about matching models including downloads, likes, tags, and direct links. Include links to the models in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending models", "Top 10 most recent models" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the model (e.g., 'google', 'meta-llama', 'microsoft')"}, 'task': {'type': 'string', 'description': "Model task type (e.g., 'text-generation', 'image-classification', 'translation')"}, 'library': {'type': 'string', 'description': "Framework the model uses (e.g., 'transformers', 'diffusers', 'timm')"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads , likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='model_details', description='Get detailed information about a specific model from the Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'model_id': {'type': 'string', 'minLength': 1, 'description': 'Model ID (e.g., microsoft/DialoGPT-large)'}}, 'required': ['model_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Model Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='paper_search', description="Find Machine Learning research papers on the Hugging Face hub. Include 'Link to paper' When presenting the results. Consider whether tabulating results matches user intent.", inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'minLength': 3, 'maxLength': 200, 'description': 'Semantic Search query'}, 'results_limit': {'type': 'number', 'default': 12, 'description': 'Number of results to return'}, 'concise_only': {'type': 'boolean', 'default': False, 'description': 'Return a 2 sentence summary of the abstract. Use for broad search terms which may return a lot of results. Check with User if unsure.'}}, 'required': ['query'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Paper Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_search', description='Find Datasets hosted on the Hugging Face hub. Returns comprehensive information about matching datasets including downloads, likes, tags, and direct links. Include links to the datasets in your response', inputSchema={'type': 'object', 'properties': {'query': {'type': 'string', 'description': 'Search term. Leave blank and specify "sort" and "limit" to get e.g. "Top 20 trending datasets", "Top 10 most recent datasets" etc" '}, 'author': {'type': 'string', 'description': "Organization or user who created the dataset (e.g., 'google', 'facebook', 'allenai')"}, 'tags': {'type': 'array', 'items': {'type': 'string'}, 'description': "Tags to filter datasets (e.g., ['language:en', 'size_categories:1M<n<10M', 'task_categories:text-classification'])"}, 'sort': {'type': 'string', 'enum': ['trendingScore', 'downloads', 'likes', 'createdAt', 'lastModified'], 'description': 'Sort order: trendingScore, downloads, likes, createdAt, lastModified'}, 'limit': {'type': 'number', 'minimum': 1, 'maximum': 100, 'default': 20, 'description': 'Maximum number of results to return'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Search', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=True)), Tool(name='dataset_details', description='Get detailed information about a specific dataset on Hugging Face Hub.', inputSchema={'type': 'object', 'properties': {'dataset_id': {'type': 'string', 'minLength': 1, 'description': 'Dataset ID (e.g., squad, glue, imdb)'}}, 'required': ['dataset_id'], 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='Dataset Details', readOnlyHint=True, destructiveHint=False, idempotentHint=None, openWorldHint=False)), Tool(name='gr1_evalstate_flux1_schnell', description='Generate an image using the Flux 1 Schnell Image Generator. (from evalstate/flux1_schnell)', inputSchema={'type': 'object', 'properties': {'prompt': {'type': 'string'}, 'seed': {'type': 'number', 'description': 'numeric value between 0 and 2147483647'}, 'randomize_seed': {'type': 'boolean', 'default': True}, 'width': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'height': {'type': 'number', 'description': 'numeric value between 256 and 2048', 'default': 1024}, 'num_inference_steps': {'type': 'number', 'description': 'numeric value between 1 and 50', 'default': 4}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='evalstate/flux1_schnell - flux1_schnell_infer ποΈπ¨', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr2_abidlabs_easyghibli', description='Convert an image into a Studio Ghibli style image (from abidlabs/EasyGhibli)', inputSchema={'type': 'object', 'properties': {'spatial_img': {'type': 'string', 'description': 'File input: provide URL or file path'}}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='abidlabs/EasyGhibli - abidlabs_EasyGhiblisingle_condition_generate_image π¦', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True)), Tool(name='gr3_linoyts_framepack_f1', description='FramePack_F1_end_process tool from linoyts/FramePack-F1', inputSchema={'type': 'object', 'properties': {}, 'additionalProperties': False, '$schema': 'http://json-schema.org/draft-07/schema#'}, annotations=ToolAnnotations(title='linoyts/FramePack-F1 - FramePack_F1_end_process πΉβ‘οΈ', readOnlyHint=None, destructiveHint=None, idempotentHint=None, openWorldHint=True))]"""
print(str(e))
# Format the prompt
formatted_prompt = hf_query_gen_prompt.format(
Tool_Details=hf_query_gen_tool_details
) + "\n\n" + conversation_history
# Get plan from Gemini
plan = generate_with_gemini(formatted_prompt, "Planning with gemini")
# Parse the plan
parsed_plan = parse_json_codefences(plan)
# Call tool to get tool calls
try:
tool_calls = await asyncio.gather(*[call_tool(step['tool'], step['args']) for step in parsed_plan])
except Exception as e:
tool_calls = []
if tool_calls!=[]:
formatted_context_prompt = hf_context_gen_prompt.format(
Conversation=conversation_history,
Tool_Calls=parsed_plan,
Results=tool_calls
)
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
else:
formatted_context_prompt = hf_context_gen_prompt.format(
Conversation=conversation_history,
Tool_Calls=parsed_plan,
Results="Couldn't generate the tool calls results but use your knowledge about huggingface platform(models, datasets, spaces, training libraries, transfomers library etc.) as backup to generate the plan"
)
context = generate_with_gemini(formatted_context_prompt, "Generating context for plan")
return context
def generate_code_with_devstral(plan_text, history, file_cache):
"""Generate code using the deployed Devstral model via Modal"""
if not MODAL_AVAILABLE:
return "β Modal not available. Please install Modal to use code generation."
if not plan_text or not plan_text.strip():
return "β Please generate a plan first before generating code."
try:
# Extract user query from conversation history
user_query = ""
if history:
# Get the latest user message as the main query
for user_msg, ai_msg in reversed(history):
if user_msg and user_msg.strip():
user_query = user_msg.strip()
break
if not user_query:
user_query = "Generate Python code based on the provided plan and context."
# Build context from file cache and conversation
context = ""
if file_cache:
context += "Available Data Files:\n"
for cache_key, file_info in file_cache.items():
context += f"- {file_info.get('file_name', 'Unknown file')}\n"
if 'stats' in file_info:
context += f" {file_info['stats']}\n"
# Add conversation context
if history:
context += "\nConversation Context:\n"
for user_msg, ai_msg in history[-3:]: # Last 3 exchanges
context += f"User: {user_msg}\n"
if ai_msg:
context += f"Assistant: {ai_msg}\n"
# Format the user prompt with variables
formatted_user_prompt = devstral_code_gen_user_prompt.format(
user_query=user_query,
plan=plan_text,
context=context
)
# Use Modal app.run() pattern like in the examples
base_url = "https://abhinav-bhatnagar--devstral-vllm-deployment-serve.modal.run"
api_key = "ak-zMwhIPjqvBj30jbm1DmKqx"
print(f"π Generating code using Devstral...")
print(f"π‘ Connecting to: {base_url}")
# Call Modal inference using the proper app.run() context
with devstral_app.run():
result = run_devstral_inference.remote(
base_url=base_url,
api_key=api_key,
prompts=[formatted_user_prompt],
system_prompt=devstral_code_gen_sys_prompt,
mode="single"
)
if result and "response" in result:
code_output = result["response"]
return f"π **Generated Code:**\n\n{code_output}"
else:
return "β **Error:** No response received from Devstral model."
except Exception as e:
return f"β **Error:** {str(e)}"
# Custom CSS for a sleek design
custom_css = """
.gradio-container {
max-width: 900px !important;
margin: auto !important;
}
.chat-container {
height: 600px !important;
}
#component-0 {
height: 100vh;
}
.message {
padding: 15px !important;
margin: 10px 0 !important;
border-radius: 15px !important;
}
.user-message {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
margin-left: 20% !important;
}
.bot-message {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%) !important;
color: white !important;
margin-right: 20% !important;
}
.upload-area {
border: 2px dashed #4f46e5 !important;
border-radius: 10px !important;
padding: 20px !important;
text-align: center !important;
background: linear-gradient(135deg, #f0f4ff 0%, #e0e7ff 100%) !important;
}
.btn-primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
}
.btn-secondary {
background: linear-gradient(135deg, #ffeaa7 0%, #fab1a0 100%) !important;
border: none !important;
border-radius: 25px !important;
padding: 10px 25px !important;
font-weight: bold !important;
color: #2d3436 !important;
}
.title {
text-align: center !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 20px !important;
}
.subtitle {
text-align: center !important;
color: #6c757d !important;
font-size: 1.2em !important;
margin-bottom: 30px !important;
}
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css, title="Data Science Requirements Gathering Agent") as app:
# Header
gr.HTML("""
<div class="title">π¬ Data Science Consultant</div>
<div class="subtitle">
Transform your vague ideas into reality
</div>
""")
with gr.Row():
with gr.Column(scale=3):
# Chat interface
chatbot = gr.Chatbot(
label="Requirements Gathering Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
elem_classes=["chat-container"]
)
plan_output = gr.Textbox(
label="Generated Plan",
interactive=False,
visible=True,
lines=10,
max_lines=20
)
code_output = gr.Textbox(
label="Generated Code",
interactive=False,
visible=True,
lines=15,
max_lines=30,
placeholder="Generated Python code will appear here..."
)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
placeholder="Describe your data science project or ask a question...",
label="Your Message",
lines=2,
max_lines=5
)
with gr.Column(scale=1):
send_btn = gr.Button("Send π€", variant="primary", elem_classes=["btn-primary"])
with gr.Row():
clear_btn = gr.Button("Clear Chat ποΈ", variant="secondary", elem_classes=["btn-secondary"])
with gr.Column(scale=1):
# File upload section
gr.HTML("<h3 style='text-align: center; color: #4f46e5;'>π Upload Data Files</h3>")
file_upload = gr.File(
label="Upload your files (CSV, Excel, PDF, PPT, DOCX, Images, etc.)",
file_count="multiple",
file_types=[".csv", ".xlsx", ".xls", ".json", ".txt", ".pdf", ".ppt", ".pptx", ".doc", ".docx", ".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"],
elem_classes=["upload-area"]
)
uploaded_files_display = gr.File(
label="Uploaded Files",
file_count="multiple",
interactive=False,
visible=True
)
# Instructions
gr.HTML("""
<div style="padding: 15px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%);
border-radius: 10px; margin-top: 20px;">
<h4 style="color: #4f46e5; margin-bottom: 10px;">π‘ How it works:</h4>
<ol style="color: #555; font-size: 14px; line-height: 1.6;">
<li>Describe your data science project</li>
<li>Upload your files (data, documents, images)</li>
<li>Answer clarifying questions</li>
<li>Generate a plan for your project</li>
<li>Generate Python code using Devstral AI</li>
</ol>
<p style="color: #666; font-size: 12px; margin-top: 10px;">
π Supports: CSV, Excel, PDF, PowerPoint, Word docs, Images, JSON, Text files<br>
π» Code generation powered by Mistral Devstral-Small-2505
</p>
</div>
""")
# Action buttons section
with gr.Column():
plan_btn = gr.Button("Generate Plan π", variant="secondary", elem_classes=["btn-secondary"], size="lg")
code_btn = gr.Button("Generate Code π»", variant="secondary", elem_classes=["btn-secondary"], size="lg")
# State for conversation history and file cache
chat_history = gr.State([])
file_cache = gr.State({})
# Event handlers
def handle_send(message, history, files, cache):
if message.strip():
new_history, updated_history, cleared_input, updated_cache = chat_interface(message, history, files, cache)
return new_history, updated_history, cleared_input, updated_cache
return history, history, message, cache
# Wire up the interface
send_btn.click(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
msg.submit(
handle_send,
inputs=[msg, chat_history, uploaded_files_display, file_cache],
outputs=[chatbot, chat_history, msg, file_cache]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, chat_history, file_cache]
)
plan_btn.click(
generate_plan,
inputs=[chat_history, file_cache],
outputs=[plan_output]
)
code_btn.click(
generate_code_with_devstral,
inputs=[plan_output, chat_history, file_cache],
outputs=[code_output]
)
file_upload.change(
lambda files: files,
inputs=[file_upload],
outputs=[uploaded_files_display]
)
# Welcome message
app.load(
lambda: [(None, "π Hello! I'm your Data Science Project Agent. I'll help you transform your project ideas into reality .\n\nπ **Let's get started!** Tell me about your data science project or what you're trying to achieve.")],
outputs=[chatbot]
)
if __name__ == "__main__":
app.launch(share=True, show_error=True) |