deepsearch / research_agent.py
suchith83's picture
research app
68b80a4
import os
from typing import List, Dict, Any, Optional
from openai import OpenAI
import json
from tools import SearchTool, FetchTool, SummarizeTool, FirecrawlScrapeTool
from dotenv import load_dotenv
from openai.types.chat import ChatCompletionMessage
from openai.types.chat.chat_completion import ChatCompletion
load_dotenv()
def print_section(title: str, content: str):
"""Print a section with a clear separator."""
print(f"\n{'='*80}")
print(f"{title}")
print(f"{'='*80}")
print(content)
print(f"{'='*80}\n")
class PromptRefiner:
def __init__(self, client):
self.client = client
self.model = "qwen-3-32b"
def refine(self, query: str) -> str:
"""Refine the user's query into a structured research prompt."""
#print_section("PROMPT REFINER", f"Original query: {query}")
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": """You are a "Prompt Architect" for a Deep Research Tool. Your job is to take an informal user query and turn it into a clear, comprehensive, and structured research prompt.
Your output MUST follow this exact format:
[RESEARCH_OBJECTIVE]
A clear, single-sentence statement of what needs to be researched.
[CONTEXT]
- Domain/field of research
- Required background knowledge
- Any specific constraints or boundaries
[KEY_QUESTIONS]
1. First specific question to answer
2. Second specific question to answer
3. Third specific question to answer
(Add more if needed)
[OUTPUT_REQUIREMENTS]
- Format (e.g., structured report, bullet points)
- Depth of analysis
- Required citations or sources
- Length constraints
[KEY_TERMS]
- Term 1
- Term 2
- Term 3
(Add more if needed)
[CLARIFICATIONS_NEEDED]
- Any questions that need to be asked to the user
- Any assumptions made
"""},
{"role": "user", "content": query}
]
)
refined_query = response.choices[0].message.content
#print_section("REFINED QUERY", refined_query)
return refined_query
class ResearcherAgent:
def __init__(self, client):
self.client = client
self.model = "qwen-3-32b"
self.tools = [
SearchTool(),
# FetchTool(),
SummarizeTool(),
FirecrawlScrapeTool()
]
self.tools_json = [
{
"type": "function",
"function": tool.to_json()
}
for tool in self.tools
]
self.tools_map = {tool.name: tool for tool in self.tools}
def research(self, query: str) -> str:
"""Perform web research on the given query and return summarized findings."""
#print_section("RESEARCHER", f"Starting research on: {query}")
conversation_history = [
{"role": "system", "content": """You are a research agent that searches the web, reads contents of the urls, and summarizes findings.
Use below tools if you think you are not up to date with the latest information:
- search tool - to find relevant URLs
- firecrawl_scrape tool - to get content from the most promising URLs in markdown format
- summarize tool - to extract key information
Organize findings in a clear, structured format
Your final response should be a well-organized summary of all findings, with clear sections and bullet points where appropriate."""},
{"role": "user", "content": query}
]
while True:
response = self.client.chat.completions.create(
model=self.model,
messages=conversation_history,
tools=self.tools_json,
)
message = response.choices[0].message
conversation_history.append({
"role": "assistant",
"content": message.content if message.content else "",
"tool_calls": message.tool_calls
})
if not message.tool_calls:
#print_section("RESEARCH FINDINGS", message.content or "No findings generated")
return message.content or "No findings generated"
tool_results = []
for tool_call in message.tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
#print_section("TOOL CALL", f"Tool: {tool_name}\nArguments: {json.dumps(arguments, indent=2)}")
if tool_name not in self.tools_map:
continue
tool = self.tools_map[tool_name]
result = tool(**arguments)
#print_section("TOOL RESULT", f"Tool: {tool_name}\nResult: {result}")
tool_results.append({
"tool_call_id": tool_call.id,
"role": "tool",
"name": tool_name,
"content": result
})
conversation_history.extend(tool_results)
class PlannerAgent:
def __init__(self, client):
self.client = client
self.model = "qwen-3-32b"
self.scratchpad = ""
self.researcher = ResearcherAgent(client)
def plan(self, refined_query: str) -> str:
"""Plan the research process and manage the scratchpad."""
#print_section("PLANNER", f"Starting research planning for:\n{refined_query}")
conversation_history = [
{"role": "system", "content": """
You are a research planner that manages the research process.
Your responses MUST follow this exact format:
If you need more research:
NEED_RESEARCH
RESEARCH_QUERY: [specific query to research]
REASON: [why this research is needed]
If you have enough information:
ENOUGH_INFORMATION
SUMMARY: [brief summary of what we've learned]
NEXT_STEPS: [what should be done with this information]
Always evaluate:
1. Have we answered all key questions from the research objective?
2. Do we have enough depth and breadth of information?
3. Are there any gaps in our understanding?
4. Do we need to verify any information?
Current date is 2025-06-04.
"""},
{"role": "user", "content": f"Query: {refined_query}\nCurrent scratchpad:\n{self.scratchpad}"}
]
while True:
response = self.client.chat.completions.create(
model=self.model,
messages=conversation_history
)
message = response.choices[0].message
#print_section("PLANNER DECISION", message.content)
conversation_history.append({"role": "assistant", "content": message.content})
# Parse the planner's decision
if "ENOUGH_INFORMATION" in message.content:
#print_section("PLANNER", "Research complete. Moving to report generation.")
return self.scratchpad
elif "NEED_RESEARCH" in message.content:
# Extract research query from the message
research_query = message.content.split("RESEARCH_QUERY:")[1].split("\n")[0].strip()
findings = self.researcher.research(research_query)
self.scratchpad += f"\n\nNew findings:\n{findings}"
#print_section("UPDATED SCRATCHPAD", self.scratchpad)
conversation_history.append({
"role": "user",
"content": f"Updated scratchpad:\n{self.scratchpad}"
})
class ReporterAgent:
def __init__(self, client):
self.client = client
self.model = "qwen-3-32b"
def generate_report(self, scratchpad: str, original_query: str) -> str:
"""Generate a final report based on the scratchpad content."""
#print_section("REPORTER", "Generating final report")
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": """You are a research reporter that generates clear, well-structured reports.
Your report MUST follow this format:
[EXECUTIVE_SUMMARY]
A concise overview of the key findings and conclusions.
[MAIN_FINDINGS]
1. First major finding
- Supporting details
- Sources/references
2. Second major finding
- Supporting details
- Sources/references
(Add more as needed)
[ANALYSIS]
- Interpretation of the findings
- Connections between different pieces of information
- Implications or significance
[CONCLUSION]
- Summary of key takeaways
- Any remaining questions or areas for further research
[SOURCES]
- List of all sources used in the research"""},
{"role": "user", "content": f"Original query: {original_query}\n\nResearch findings:\n{scratchpad}\n\nGenerate a comprehensive report that answers the original query."}
]
)
report = response.choices[0].message.content
# #print_section("FINAL REPORT", report)
return report
def research(query: str) -> str:
"""Main research function that orchestrates the entire research process."""
try:
api_key = os.environ.get("CEREBRAS_API_KEY")
if not api_key:
return "Error: Please set CEREBRAS_API_KEY environment variable"
client = OpenAI(
base_url="https://api.cerebras.ai/v1",
api_key=api_key
)
# Step 1: Refine the prompt
refiner = PromptRefiner(client)
refined_query = refiner.refine(query)
# Step 2: Plan and execute research
planner = PlannerAgent(client)
scratchpad = planner.plan(refined_query)
# Step 3: Generate final report
reporter = ReporterAgent(client)
final_report = reporter.generate_report(scratchpad, query)
return final_report
except Exception as e:
return f"Error in research process: {str(e)}"
# if __name__ == "__main__":
# while True:
# query = input("Enter your query: ")
# if query == "exit":
# break
# print(research(query))