Spaces:
Running
Running
force push to update remote with working files
Browse files- .env +4 -0
- .gitignore +0 -1
- README.md +2 -2
- __pycache__/research.cpython-312.pyc +0 -0
- app.py +41 -38
- research.py +0 -178
- test_search.py +36 -0
- tools/__init__.py +0 -6
- tools/fetch.py +0 -31
- tools/search.py +0 -65
- tools/summarize.py +0 -42
- tools/tool.py +0 -15
.env
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GOOGLE_API_KEY="AIzaSyDeMN75nrEsda5UbgPJBzkf75tK1YKsS8k"
|
2 |
+
GOOGLE_CSE_ID="b11df941e76874d3f"
|
3 |
+
CEREBRAS_API_KEY="csk-8ee89j8w8kcxdj3v62er4r3jjw3ctpff88p5whfdrvkccmrf"
|
4 |
+
FIRECRAWL_API_KEY="fc-ca91b1bc71e14c6281c4fe0e1f90ed4e"
|
.gitignore
CHANGED
@@ -1,3 +1,2 @@
|
|
1 |
venv/
|
2 |
tools/__pycache__
|
3 |
-
.env
|
|
|
1 |
venv/
|
2 |
tools/__pycache__
|
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 😻
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
@@ -7,7 +7,7 @@ sdk: gradio
|
|
7 |
sdk_version: 5.32.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: Searchs through web and
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Search
|
3 |
emoji: 😻
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
|
|
7 |
sdk_version: 5.32.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
short_description: Searchs through web and returns related links
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/research.cpython-312.pyc
ADDED
Binary file (8.19 kB). View file
|
|
app.py
CHANGED
@@ -1,44 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
Args:
|
10 |
-
text (str): The query to perform websearch and provide summary.
|
11 |
-
Returns:
|
12 |
-
text (str): A detailed summary on the query asked by perfoming web search.
|
13 |
-
"""
|
14 |
-
if not query.strip():
|
15 |
-
return "Please enter a valid query"
|
16 |
-
|
17 |
try:
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
except Exception as e:
|
21 |
-
return f"Error
|
22 |
-
|
23 |
-
# Create Gradio interface
|
24 |
-
demo = gr.Interface(
|
25 |
-
fn=research_query,
|
26 |
-
inputs=gr.Textbox(
|
27 |
-
lines=3,
|
28 |
-
placeholder="Enter your research query here...",
|
29 |
-
label="Research Query"
|
30 |
-
),
|
31 |
-
outputs=gr.Textbox(
|
32 |
-
lines=10,
|
33 |
-
label="Research Results"
|
34 |
-
),
|
35 |
-
title="Research Assistant",
|
36 |
-
description="Enter a query to get detailed research results using ReAct agent.",
|
37 |
-
examples=[
|
38 |
-
["What are the latest developments in quantum computing?"],
|
39 |
-
["Explain the impact of artificial intelligence on healthcare"],
|
40 |
-
]
|
41 |
-
)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
from dotenv import load_dotenv
|
5 |
|
6 |
+
load_dotenv(".env")
|
7 |
+
|
8 |
+
API_KEY = os.getenv("GOOGLE_API_KEY")
|
9 |
+
CSE_ID = os.getenv("GOOGLE_CSE_ID")
|
10 |
+
|
11 |
+
def search_web(query):
|
12 |
+
if not API_KEY or not CSE_ID:
|
13 |
+
return "Missing API key or Search Engine ID in .env"
|
14 |
+
|
15 |
+
params = {
|
16 |
+
"q": query,
|
17 |
+
"key": API_KEY,
|
18 |
+
"cx": CSE_ID
|
19 |
+
}
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
try:
|
22 |
+
response = requests.get("https://www.googleapis.com/customsearch/v1", params=params)
|
23 |
+
response.raise_for_status()
|
24 |
+
data = response.json()
|
25 |
+
results = data.get("items", [])
|
26 |
+
if not results:
|
27 |
+
return "No results found."
|
28 |
+
|
29 |
+
formatted = ""
|
30 |
+
for i, result in enumerate(results[:3], 1):
|
31 |
+
title = result.get("title", "No Title")
|
32 |
+
link = result.get("link", "No Link")
|
33 |
+
snippet = result.get("snippet", "No Snippet")
|
34 |
+
formatted += f"**Result {i}**\n[{title}]({link})\n\n{snippet}\n\n---\n"
|
35 |
+
return formatted
|
36 |
+
|
37 |
except Exception as e:
|
38 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Gradio UI
|
41 |
+
gr.Interface(
|
42 |
+
fn=search_web,
|
43 |
+
inputs=gr.Textbox(label="Search Query", placeholder="e.g. IPL 2025 predictions"),
|
44 |
+
outputs=gr.Markdown(label="Results"),
|
45 |
+
title="Google Search Tool",
|
46 |
+
description="Uses Google Custom Search API to fetch top 3 web results"
|
47 |
+
).launch()
|
research.py
DELETED
@@ -1,178 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import List, Dict, Any, Optional
|
3 |
-
from openai import OpenAI
|
4 |
-
import json
|
5 |
-
from tools import SearchTool, FetchTool, SummarizeTool
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
import httpx
|
8 |
-
from mcp.server.fastmcp import FastMCP
|
9 |
-
from openai.types.chat import ChatCompletionMessage
|
10 |
-
from openai.types.chat.chat_completion import ChatCompletion
|
11 |
-
|
12 |
-
# mcp = FastMCP("researcher")
|
13 |
-
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
class ReActAgent:
|
17 |
-
def __init__(self, client):
|
18 |
-
self.client = client
|
19 |
-
self.model = "qwen-3-32b"
|
20 |
-
self.conversation_history: List[Dict[str, str]] = []
|
21 |
-
self.max_history_length = 10 # Limit conversation history
|
22 |
-
self.tools = [
|
23 |
-
SearchTool(),
|
24 |
-
FetchTool(),
|
25 |
-
SummarizeTool()
|
26 |
-
]
|
27 |
-
|
28 |
-
self.tools_json = [
|
29 |
-
{
|
30 |
-
"type": "function",
|
31 |
-
"function": tool.to_json()
|
32 |
-
}
|
33 |
-
for tool in self.tools
|
34 |
-
]
|
35 |
-
self.tools_map = {tool.name: tool for tool in self.tools}
|
36 |
-
self.process_log = [] # Store the intermediate process
|
37 |
-
|
38 |
-
def _execute_tool(self, tool_call: Dict[str, Any]) -> str:
|
39 |
-
"""Execute the called tool and return the result."""
|
40 |
-
try:
|
41 |
-
tool_name = tool_call.function.name
|
42 |
-
arguments = json.loads(tool_call.function.arguments)
|
43 |
-
|
44 |
-
if tool_name not in self.tools_map:
|
45 |
-
return f"Error: Unknown tool: {tool_name}"
|
46 |
-
|
47 |
-
tool = self.tools_map[tool_name]
|
48 |
-
result = tool(**arguments)
|
49 |
-
|
50 |
-
# Log the tool execution
|
51 |
-
self.process_log.append({
|
52 |
-
"tool": tool_name,
|
53 |
-
"arguments": arguments,
|
54 |
-
"result": result
|
55 |
-
})
|
56 |
-
|
57 |
-
return result
|
58 |
-
except json.JSONDecodeError:
|
59 |
-
error_msg = "Error: Invalid tool arguments format"
|
60 |
-
self.process_log.append({
|
61 |
-
"tool": tool_call.function.name,
|
62 |
-
"arguments": tool_call.function.arguments,
|
63 |
-
"result": error_msg
|
64 |
-
})
|
65 |
-
return error_msg
|
66 |
-
except Exception as e:
|
67 |
-
error_msg = f"Error executing tool: {str(e)}"
|
68 |
-
self.process_log.append({
|
69 |
-
"tool": tool_call.function.name,
|
70 |
-
"arguments": tool_call.function.arguments,
|
71 |
-
"result": error_msg
|
72 |
-
})
|
73 |
-
return error_msg
|
74 |
-
|
75 |
-
def _truncate_history(self):
|
76 |
-
"""Keep only the most recent messages to prevent context overflow."""
|
77 |
-
if len(self.conversation_history) > self.max_history_length:
|
78 |
-
self.conversation_history = self.conversation_history[-self.max_history_length:]
|
79 |
-
|
80 |
-
def _format_process_log(self) -> str:
|
81 |
-
"""Format the process log into a readable string."""
|
82 |
-
if not self.process_log:
|
83 |
-
return "No intermediate steps were taken."
|
84 |
-
|
85 |
-
formatted_log = ["<intermediate_steps>"]
|
86 |
-
for i, step in enumerate(self.process_log, 1):
|
87 |
-
formatted_log.append(f"\nStep {i}:")
|
88 |
-
formatted_log.append(f"Tool: {step['tool']}")
|
89 |
-
formatted_log.append(f"Arguments: {json.dumps(step['arguments'], indent=2)}")
|
90 |
-
formatted_log.append(f"Result: {step['result']}")
|
91 |
-
formatted_log.append("</intermediate_steps>")
|
92 |
-
return "\n".join(formatted_log)
|
93 |
-
|
94 |
-
def run(self, user_input: str) -> str:
|
95 |
-
"""Run the ReAct loop for a single user input."""
|
96 |
-
if not user_input or not isinstance(user_input, str):
|
97 |
-
return "Error: Invalid input. Please provide a valid string query."
|
98 |
-
|
99 |
-
try:
|
100 |
-
# Reset process log for new query
|
101 |
-
self.process_log = []
|
102 |
-
|
103 |
-
# Add user input to conversation history
|
104 |
-
self.conversation_history.append({"role": "user", "content": user_input})
|
105 |
-
print(f"\n\nUser input: {user_input}\n--------------------------------\n")
|
106 |
-
|
107 |
-
while True:
|
108 |
-
try:
|
109 |
-
# Get response from the model
|
110 |
-
response: ChatCompletion = self.client.chat.completions.create(
|
111 |
-
model=self.model,
|
112 |
-
messages=self.conversation_history,
|
113 |
-
tools=self.tools_json,
|
114 |
-
)
|
115 |
-
|
116 |
-
message: ChatCompletionMessage = response.choices[0].message
|
117 |
-
|
118 |
-
# Add assistant's response to conversation history
|
119 |
-
self.conversation_history.append({
|
120 |
-
"role": "assistant",
|
121 |
-
"content": message.content if message.content else "",
|
122 |
-
"tool_calls": message.tool_calls
|
123 |
-
})
|
124 |
-
|
125 |
-
# If no tool calls, return the response with process log
|
126 |
-
if not message.tool_calls:
|
127 |
-
print("No tool calls\nExiting loop\n--------------------------------")
|
128 |
-
final_response = message.content or "No response generated"
|
129 |
-
process_log = self._format_process_log()
|
130 |
-
return f"{process_log}\n\n{final_response}"
|
131 |
-
|
132 |
-
# Execute the tool calls
|
133 |
-
tool_results = []
|
134 |
-
for tool_call in message.tool_calls:
|
135 |
-
print(f"Tool call: {tool_call.function.name}\nTool arguments: {tool_call.function.arguments}")
|
136 |
-
tool_result = self._execute_tool(tool_call)
|
137 |
-
print(f"Tool result: {tool_result}\n--------------------------------\n")
|
138 |
-
tool_results.append({
|
139 |
-
"tool_call_id": tool_call.id,
|
140 |
-
"role": "tool",
|
141 |
-
"name": tool_call.function.name,
|
142 |
-
"content": tool_result
|
143 |
-
})
|
144 |
-
|
145 |
-
# Add tool results to conversation history
|
146 |
-
self.conversation_history.extend(tool_results)
|
147 |
-
self._truncate_history()
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
error_msg = f"Error during model interaction: {str(e)}"
|
151 |
-
process_log = self._format_process_log()
|
152 |
-
return f"{error_msg}\n\n{process_log}"
|
153 |
-
|
154 |
-
except Exception as e:
|
155 |
-
error_msg = f"Error in research process: {str(e)}"
|
156 |
-
process_log = self._format_process_log()
|
157 |
-
return f"{error_msg}\n\n{process_log}"
|
158 |
-
|
159 |
-
# @mcp.tool()
|
160 |
-
def research(query: str) -> str:
|
161 |
-
"""Get final answer on the query after detailed research"""
|
162 |
-
try:
|
163 |
-
api_key = os.environ.get("CEREBRAS_API_KEY")
|
164 |
-
if not api_key:
|
165 |
-
return "Error: Please set CEREBRAS_API_KEY environment variable"
|
166 |
-
|
167 |
-
client = OpenAI(
|
168 |
-
base_url="https://api.cerebras.ai/v1",
|
169 |
-
api_key=api_key
|
170 |
-
)
|
171 |
-
|
172 |
-
agent = ReActAgent(client)
|
173 |
-
return agent.run(query)
|
174 |
-
except Exception as e:
|
175 |
-
return f"Error in research function: {str(e)}"
|
176 |
-
|
177 |
-
# if __name__ == "__main__":
|
178 |
-
# mcp.run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test_search.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
load_dotenv(".env")
|
6 |
+
|
7 |
+
API_KEY = os.getenv("GOOGLE_API_KEY")
|
8 |
+
CSE_ID = os.getenv("GOOGLE_CSE_ID")
|
9 |
+
# QUERY = "OpenAI GPT-4"
|
10 |
+
QUERY = "IPL 2025 final points table predictions team performance analysis"
|
11 |
+
|
12 |
+
if not API_KEY or not CSE_ID:
|
13 |
+
print("Missing API key or Search Engine ID")
|
14 |
+
exit(1)
|
15 |
+
|
16 |
+
params = {
|
17 |
+
"q": QUERY,
|
18 |
+
"key": API_KEY,
|
19 |
+
"cx": CSE_ID
|
20 |
+
}
|
21 |
+
|
22 |
+
response = requests.get("https://www.googleapis.com/customsearch/v1", params=params)
|
23 |
+
|
24 |
+
if response.status_code != 200:
|
25 |
+
print("Error:", response.status_code, response.text)
|
26 |
+
else:
|
27 |
+
data = response.json()
|
28 |
+
results = data.get("items", [])
|
29 |
+
if not results:
|
30 |
+
print("API is working, but no search results found.")
|
31 |
+
else:
|
32 |
+
for i, result in enumerate(results[:3], 1):
|
33 |
+
print(f"\nResult {i}:")
|
34 |
+
print("Title:", result.get("title"))
|
35 |
+
print("Link:", result.get("link"))
|
36 |
+
print("Snippet:", result.get("snippet"))
|
tools/__init__.py
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
from .search import SearchTool
|
2 |
-
from .fetch import FetchTool
|
3 |
-
from .summarize import SummarizeTool
|
4 |
-
from .tool import Tool
|
5 |
-
|
6 |
-
__all__ = ["SearchTool", "FetchTool", "SummarizeTool", "Tool"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/fetch.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
from .tool import Tool
|
2 |
-
from markdownify import markdownify
|
3 |
-
import requests
|
4 |
-
|
5 |
-
class FetchTool(Tool):
|
6 |
-
def __init__(self):
|
7 |
-
super().__init__(
|
8 |
-
name="fetch",
|
9 |
-
description="Fetch the content of a URL and return the markdownified version of the content",
|
10 |
-
inputSchema={
|
11 |
-
"type": "object",
|
12 |
-
"properties": {
|
13 |
-
"url": {"type": "string", "description": "The URL to fetch"}
|
14 |
-
}
|
15 |
-
}
|
16 |
-
)
|
17 |
-
|
18 |
-
def __call__(self, url: str):
|
19 |
-
try:
|
20 |
-
if not url:
|
21 |
-
return "Error: URL parameter is required"
|
22 |
-
|
23 |
-
resp = requests.get(url)
|
24 |
-
resp.raise_for_status() # Raise an exception for bad status codes
|
25 |
-
|
26 |
-
return markdownify(resp.text)
|
27 |
-
|
28 |
-
except requests.exceptions.RequestException as e:
|
29 |
-
return f"Error fetching URL: {str(e)}"
|
30 |
-
except Exception as e:
|
31 |
-
return f"Unexpected error while processing URL: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/search.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import requests
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
import os
|
4 |
-
from .tool import Tool
|
5 |
-
|
6 |
-
load_dotenv("./.env")
|
7 |
-
|
8 |
-
class SearchTool(Tool):
|
9 |
-
def __init__(self):
|
10 |
-
super().__init__(
|
11 |
-
name="search",
|
12 |
-
description="Search the web for information",
|
13 |
-
inputSchema={
|
14 |
-
"type": "object",
|
15 |
-
"properties": {
|
16 |
-
"query": {"type": "string", "description": "The search query"}
|
17 |
-
}
|
18 |
-
}
|
19 |
-
)
|
20 |
-
|
21 |
-
self.api_key = os.environ.get("GOOGLE_API_KEY")
|
22 |
-
self.search_engine_id = os.environ.get("GOOGLE_CSE_ID")
|
23 |
-
|
24 |
-
if not self.api_key:
|
25 |
-
raise ValueError("Please set GOOGLE_API_KEY environment variable")
|
26 |
-
if not self.search_engine_id:
|
27 |
-
raise ValueError("Please set GOOGLE_CSE_ID environment variable")
|
28 |
-
|
29 |
-
def __call__(self, query: str):
|
30 |
-
try:
|
31 |
-
if not query:
|
32 |
-
return "Error: Query parameter is required"
|
33 |
-
|
34 |
-
params = {
|
35 |
-
"q": query,
|
36 |
-
"key": self.api_key,
|
37 |
-
"cx": self.search_engine_id
|
38 |
-
}
|
39 |
-
|
40 |
-
resp = requests.get("https://www.googleapis.com/customsearch/v1", params=params)
|
41 |
-
resp.raise_for_status() # Raise an exception for bad status codes
|
42 |
-
|
43 |
-
_results = resp.json().get("items", [])
|
44 |
-
results = []
|
45 |
-
for result in _results[:3]:
|
46 |
-
results.append({
|
47 |
-
"title": result.get("title", "No title"),
|
48 |
-
"link": result.get("link", "No link"),
|
49 |
-
"snippet": result.get("snippet", "No snippet")
|
50 |
-
})
|
51 |
-
|
52 |
-
if not results:
|
53 |
-
return "No results found for the given query."
|
54 |
-
|
55 |
-
# Format results as a string
|
56 |
-
formatted_results = []
|
57 |
-
for i, result in enumerate(results, 1):
|
58 |
-
formatted_results.append(f"Result {i}:\nTitle: {result['title']}\nLink: {result['link']}\nSnippet: {result['snippet']}\n")
|
59 |
-
|
60 |
-
return "\n".join(formatted_results)
|
61 |
-
|
62 |
-
except requests.exceptions.RequestException as e:
|
63 |
-
return f"Error during search: {str(e)}"
|
64 |
-
except Exception as e:
|
65 |
-
return f"Unexpected error during search: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/summarize.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
from .tool import Tool
|
2 |
-
from openai import OpenAI
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
import os
|
5 |
-
|
6 |
-
load_dotenv("./.env")
|
7 |
-
|
8 |
-
class SummarizeTool(Tool):
|
9 |
-
def __init__(self):
|
10 |
-
super().__init__(
|
11 |
-
name="summarize",
|
12 |
-
description="Summarize the content of a URL",
|
13 |
-
inputSchema={
|
14 |
-
"type": "object",
|
15 |
-
"properties": {
|
16 |
-
"content": {"type": "string", "description": "The content to summarize"}
|
17 |
-
}
|
18 |
-
}
|
19 |
-
)
|
20 |
-
|
21 |
-
api_key = os.environ.get("CEREBRAS_API_KEY")
|
22 |
-
if not api_key:
|
23 |
-
raise ValueError("Please set CEREBRAS_API_KEY environment variable")
|
24 |
-
|
25 |
-
self.client = OpenAI(base_url="https://api.cerebras.ai/v1", api_key=api_key)
|
26 |
-
|
27 |
-
def __call__(self, **kwargs):
|
28 |
-
try:
|
29 |
-
content = kwargs.get("content")
|
30 |
-
if not content:
|
31 |
-
return "Error: Content parameter is required"
|
32 |
-
|
33 |
-
response = self.client.chat.completions.create(
|
34 |
-
model="qwen-3-32b",
|
35 |
-
messages=[
|
36 |
-
{"role": "system", "content": "You are a helpful assistant that summarizes content while keeping the all important information."},
|
37 |
-
{"role": "user", "content": content}
|
38 |
-
]
|
39 |
-
)
|
40 |
-
return response.choices[0].message.content
|
41 |
-
except Exception as e:
|
42 |
-
return f"Error during summarization: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/tool.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
class Tool:
|
2 |
-
def __init__(self, name: str, description: str, inputSchema: dict):
|
3 |
-
self.name = name
|
4 |
-
self.description = description
|
5 |
-
self.inputSchema = inputSchema
|
6 |
-
|
7 |
-
def __repr__(self):
|
8 |
-
return f"Tool(name={self.name}, description={self.description}, inputSchema={self.inputSchema})"
|
9 |
-
|
10 |
-
def to_json(self):
|
11 |
-
return {
|
12 |
-
"name": self.name,
|
13 |
-
"description": self.description,
|
14 |
-
"parameters": self.inputSchema
|
15 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|