File size: 2,009 Bytes
f126864
 
 
 
 
 
 
 
797c083
f126864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import argparse
from typing import Dict
import dotenv
from pathlib import Path
from tqdm import tqdm
from pymilvus import MilvusClient, model

_ = dotenv.load_dotenv()


def create_collection(client: MilvusClient, collection_name: str, dimension: int):
    if client.has_collection(collection_name=collection_name):
        client.drop_collection(collection_name=collection_name)

    client.create_collection(
        collection_name=collection_name,
        dimension=dimension,
    )

def main(args: Dict):
    client = MilvusClient("milvus.db")

    embedding_fn = model.dense.OpenAIEmbeddingFunction(
        model_name=args.model_name,
        api_key=os.environ.get('OPENAI_API_KEY'),
        dimensions=args.dimension
    )

    create_collection(client, args.collection_name, args.dimension)

    docs = Path(args.docs_dir)
    md_file_paths  = list(docs.rglob('*.md'))
    mdx_file_paths = list(docs.rglob('*.mdx'))
    all_file_paths = md_file_paths + mdx_file_paths
    
    docs, payloads = [], []
    for file in tqdm(all_file_paths):
        embed_string = str(file).replace('docs/', '').replace('.mdx', '').replace('.md', '').replace('/', ' ')

        docs.append(embed_string)
        payloads.append({'file_path': str(file)})

    vectors = embedding_fn.encode_documents(docs)

    data = [
        {"id": i, "vector": vectors[i], "text": docs[i], **payloads[i]}
        for i in range(len(vectors))
    ]

    response = client.insert(collection_name=args.collection_name, data=data)
    print(f"Inserted {response['insert_count']} vectors into collection {args.collection_name}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--collection_name", type=str, default="hf_docs")
    parser.add_argument("--model_name", type=str, default="text-embedding-3-small")
    parser.add_argument("--dimension", type=int, default=1536)
    parser.add_argument("--docs_dir", type=str, default="docs")
    args = parser.parse_args()

    main(args)