File size: 5,919 Bytes
7dc78b3
 
 
 
f126864
7dc78b3
0955e72
 
 
 
7dc78b3
f126864
0955e72
 
f126864
797c083
f126864
c6fe03c
 
dce5b39
f126864
 
0955e72
 
 
f126864
 
0955e72
 
7dc78b3
 
 
0955e72
7dc78b3
 
 
0955e72
7dc78b3
 
0955e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f126864
0955e72
7dc78b3
 
92dd823
f126864
0955e72
f126864
 
0955e72
 
f126864
 
 
0955e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6fe03c
 
 
0955e72
 
c6fe03c
0955e72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f126864
0955e72
c6fe03c
 
 
0955e72
c6fe03c
0955e72
 
 
 
 
 
 
c6fe03c
 
 
 
 
 
 
 
 
0955e72
c6fe03c
0955e72
 
f126864
 
7dc78b3
 
 
 
 
 
f126864
 
 
 
 
 
0955e72
 
 
 
7dc78b3
 
0955e72
 
457a71b
0955e72
7dc78b3
0955e72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import os
import json
import subprocess
import dotenv
import shutil
import uuid

from schemas import Response
from openai import OpenAI
from pathlib import Path
from pymilvus import MilvusClient, model
from repo2txt import make_tree
from utils import copy_search_results, create_documentation_string, choice_prompt

_ = dotenv.load_dotenv()

subprocess.run(["python3", "scripts/make_docs.py"])
subprocess.run(["python3", "scripts/make_rag_db.py"])

client = MilvusClient("milvus.db")
embedding_fn = model.dense.OpenAIEmbeddingFunction(
    model_name="text-embedding-3-large",
    api_key=os.environ.get("OPENAI_API_KEY"),
    dimensions=3072,
)

oai_client = OpenAI()


def list_huggingface_resources_names() -> list[str]:
    """List all the names of the libraries, services, and other resources available within the HuggingFace ecosystem.

    Returns:
        A list of libraries, services, and other resources available within the HuggingFace ecosystem
    """
    with open("repos_config.json", "r") as f:
        repos = json.load(f)

    return [repo["title"] for repo in repos]


def search_documents(query, resource_names=None, topk=50):
    """Search for relevant documents in the Milvus database."""
    query_vectors = embedding_fn.encode_queries([query])

    search_params = {
        "collection_name": "hf_docs",
        "data": query_vectors,
        "limit": topk,
        "output_fields": ["text", "file_path", "resource"],
    }

    if resource_names:
        if len(resource_names) == 1:
            search_params["filter"] = f"resource == '{resource_names[0]}'"
        else:
            resource_list = "', '".join(resource_names)
            search_params["filter"] = f"resource in ['{resource_list}']"

    return client.search(**search_params)


def get_huggingface_documentation(topic: str, resource_names: list[str] = []) -> str:
    """Get the documentation for the given topic and resource names.

    Args:
        topic: Focus the docs on a specific topic (e.g. "Anthropic Provider Chat UI", "LoRA methods PEFT" or "TGI on Intel GPUs")
        resource_names: A list of relevant resource names to the topic. Must be as specific as possible. Empty list means all resources.

    Returns:
        A string of documentation for the given topic and resource names
    """
    try:
        # Search for relevant documents
        query_vectors = embedding_fn.encode_queries([topic])

        search_params = {
            "collection_name": "hf_docs",
            "data": query_vectors,
            "limit": 50,
            "output_fields": ["text", "file_path", "resource"],
        }

        if resource_names:
            if len(resource_names) == 1:
                search_params["filter"] = f"resource == '{resource_names[0]}'"
            else:
                resource_list = "', '".join(resource_names)
                search_params["filter"] = f"resource in ['{resource_list}']"

        search_results = client.search(**search_params)

        # Create temporary folder and copy files
        temp_folder = str(uuid.uuid4())
        copy_search_results(search_results, temp_folder)

        # Generate directory tree
        tree_structure = make_tree(Path(temp_folder) / "docs")

        # Get relevant file IDs using GPT-4
        response = oai_client.responses.parse(
            model="gpt-4o",
            input=[
                {
                    "role": "user",
                    "content": choice_prompt.substitute(
                        question=topic, tree_structure=tree_structure
                    ),
                }
            ],
            text_format=Response,
        )

        file_id = response.output_parsed.file_id

        print(f"{topic} -> {file_id}")

        # Create the documentation string using the file IDs and template
        documentation_string = create_documentation_string([file_id], temp_folder)

        # Clean up temporary folder
        shutil.rmtree(temp_folder, ignore_errors=True)

        return documentation_string

    except Exception as e:
        return f"Error generating documentation: {str(e)}"


def load_readme() -> str:
    """Load and return the README content, skipping YAML frontmatter."""
    try:
        with open("README.md", "r", encoding="utf-8") as f:
            content = f.read()

        # Skip YAML frontmatter if it exists
        lines = content.split("\n")
        start_index = 0
        
        if content.startswith("---"):
            # Find the second '---' line to skip frontmatter
            dash_count = 0
            for i, line in enumerate(lines):
                if line.strip() == "---":
                    dash_count += 1
                    if dash_count == 2:
                        start_index = i + 1
                        break
        
        # Find the line that starts with "### The Problem: Your LLM is stuck in the past"
        for i in range(start_index, len(lines)):
            if lines[i].startswith("### The Problem: Your LLM is stuck in the past"):
                start_index = i
                break
        
        # Join the lines from the target starting point
        content = "\n".join(lines[start_index:])
        return content
        
    except FileNotFoundError:
        return "README.md not found"


list_resources_demo = gr.Interface(
    fn=list_huggingface_resources_names,
    inputs=[],
    outputs="json",
)

get_docs_demo = gr.Interface(
    fn=get_huggingface_documentation,
    inputs=["text", "json"],
    outputs="text",
)

# Create README tab with Markdown component
with gr.Blocks() as readme_tab:
    gr.Markdown(load_readme())

# Create tabbed interface
demo = gr.TabbedInterface(
    [readme_tab, list_resources_demo, get_docs_demo],
    ["Quickstart", "List Resources", "Get Documentation"],
    title="Open HFContext7 MCP - Up-to-date 🤗 Docs For Any Prompt",
)

demo.launch(mcp_server=True)