File size: 72,412 Bytes
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
import os
# --- CONFIGURATION TOGGLES ---
# Set these values to configure the application's behavior.

# Set to True to disable destructive actions (clearing all data, saving edited rules, and all uploads).
DEMO_MODE = False
# Select the storage backend: "HF_DATASET", "SQLITE", or "RAM".
# This will override the .env file setting for STORAGE_BACKEND.
MEMORY_STORAGE_TYPE = "RAM" 

# If using HF_DATASET, specify the repository names here.
# These will override the .env file settings.
HF_DATASET_MEMORY_REPO = "broadfield-dev/ai-brain"
HF_DATASET_RULES_REPO = "broadfield-dev/ai-rules"

# Set environment variables based on the toggles above BEFORE importing other modules
os.environ['STORAGE_BACKEND'] = MEMORY_STORAGE_TYPE
if MEMORY_STORAGE_TYPE == "HF_DATASET":
    os.environ['HF_MEMORY_DATASET_REPO'] = HF_DATASET_MEMORY_REPO
    os.environ['HF_RULES_DATASET_REPO'] = HF_DATASET_RULES_REPO
# --- END CONFIGURATION ---


import json
import re
import logging
from datetime import datetime
from dotenv import load_dotenv
import gradio as gr
import time
import tempfile
import xml.etree.ElementTree as ET

load_dotenv() # Load .env file, but our settings above will take precedence if set.

from model_logic import (
    get_available_providers, get_model_display_names_for_provider,
    get_default_model_display_name_for_provider, call_model_stream, MODELS_BY_PROVIDER
)

    
from memory_logic import (
    initialize_memory_system,
    add_memory_entry, retrieve_memories_semantic, get_all_memories_cached, clear_all_memory_data_backend,
    add_rule_entry, retrieve_rules_semantic, remove_rule_entry, get_all_rules_cached, clear_all_rules_data_backend,
    save_faiss_indices_to_disk, STORAGE_BACKEND as MEMORY_STORAGE_BACKEND, SQLITE_DB_PATH as MEMORY_SQLITE_PATH,
    HF_MEMORY_DATASET_REPO as MEMORY_HF_MEM_REPO, HF_RULES_DATASET_REPO as MEMORY_HF_RULES_REPO
)
from websearch_logic import scrape_url, search_and_scrape_duckduckgo, search_and_scrape_google

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(threadName)s - %(message)s')
logger = logging.getLogger(__name__)
for lib_name in ["urllib3", "requests", "huggingface_hub", "PIL.PngImagePlugin", "matplotlib", "gradio_client.client", "multipart.multipart", "httpx", "sentence_transformers", "faiss", "datasets"]:
    if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)

WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true"
TOOL_DECISION_PROVIDER_ENV = os.getenv("TOOL_DECISION_PROVIDER", "groq")
TOOL_DECISION_MODEL_ID_ENV = os.getenv("TOOL_DECISION_MODEL", "llama3-8b-8192")
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7))
current_chat_session_history = []

DEFAULT_SYSTEM_PROMPT = os.getenv(
    "DEFAULT_SYSTEM_PROMPT",
    "Your Name is Node. You are a Helpful AI Assistant, and your goal is to improve yourself, so that you can improve everybody elses life. Your job is to answer questions and perform research tasks accurately and thoroughly. You can use tools like web search and page browsing. When providing information from the web, cite your sources if possible. If asked to perform a task beyond your capabilities, explain politely. Be concise unless asked for detail."
)

# --- Startup Loading File Paths ---
LOAD_RULES_FILE = os.getenv("LOAD_RULES_FILE")
LOAD_MEMORIES_FILE = os.getenv("LOAD_MEMORIES_FILE")
logger.info(f"App Config: WebSearch={WEB_SEARCH_ENABLED}, ToolDecisionProvider={TOOL_DECISION_PROVIDER_ENV}, ToolDecisionModelID={TOOL_DECISION_MODEL_ID_ENV}, MemoryBackend={MEMORY_STORAGE_BACKEND}")
logger.info(f"Startup loading: Rules from {LOAD_RULES_FILE or 'None'}, Memories from {LOAD_MEMORIES_FILE or 'None'}")


# --- Helper Functions ---
def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
    if not retrieved_insights_list:
        return "No specific guiding principles or learned insights retrieved.", []
    parsed = []
    for text in retrieved_insights_list:
        match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
        if match:
            parsed.append({"type": match.group(1).upper().replace(" ", "_"), "score": match.group(2), "text": match.group(3).strip(), "original": text.strip()})
        else:
            parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
    try:
        parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
    except ValueError: logger.warning("FORMAT_INSIGHTS: Sort error due to invalid score format.")
    grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
    for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
    sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
    return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed

def generate_interaction_metrics(user_input: str, bot_response: str, provider: str, model_display_name: str, api_key_override: str = None) -> dict:
    metric_start_time = time.time()
    logger.info(f"Generating metrics with: {provider}/{model_display_name}")
    metric_prompt_content = f"User: \"{user_input}\"\nAI: \"{bot_response}\"\nMetrics: \"takeaway\" (3-7 words), \"response_success_score\" (0.0-1.0), \"future_confidence_score\" (0.0-1.0). Output JSON ONLY, ensure it's a single, valid JSON object."
    metric_messages = [{"role": "system", "content": "You are a precise JSON output agent. Output a single JSON object containing interaction metrics as requested by the user. Do not include any explanatory text before or after the JSON object."}, {"role": "user", "content": metric_prompt_content}]
    try:
        metrics_provider_final, metrics_model_display_final = provider, model_display_name
        metrics_model_env = os.getenv("METRICS_MODEL")
        if metrics_model_env and "/" in metrics_model_env:
            m_prov, m_id = metrics_model_env.split('/', 1)
            m_disp_name = next((dn for dn, mid in MODELS_BY_PROVIDER.get(m_prov.lower(), {}).get("models", {}).items() if mid == m_id), None)
            if m_disp_name: metrics_provider_final, metrics_model_display_final = m_prov, m_disp_name
            else: logger.warning(f"METRICS_MODEL '{metrics_model_env}' not found, using interaction model.")
        response_chunks = list(call_model_stream(provider=metrics_provider_final, model_display_name=metrics_model_display_final, messages=metric_messages, api_key_override=api_key_override, temperature=0.05, max_tokens=200))
        resp_str = "".join(response_chunks).strip()
        json_match = re.search(r"```json\s*(\{.*?\})\s*```", resp_str, re.DOTALL | re.IGNORECASE) or re.search(r"(\{.*?\})", resp_str, re.DOTALL)
        if json_match: metrics_data = json.loads(json_match.group(1))
        else:
            logger.warning(f"METRICS_GEN: Non-JSON response from {metrics_provider_final}/{metrics_model_display_final}: '{resp_str}'")
            return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": "metrics format error"}
        parsed_metrics = {"takeaway": metrics_data.get("takeaway", "N/A"), "response_success_score": float(metrics_data.get("response_success_score", 0.5)), "future_confidence_score": float(metrics_data.get("future_confidence_score", 0.5)), "error": metrics_data.get("error")}
        logger.info(f"METRICS_GEN: Generated in {time.time() - metric_start_time:.2f}s. Data: {parsed_metrics}")
        return parsed_metrics
    except Exception as e:
        logger.error(f"METRICS_GEN Error: {e}", exc_info=False)
        return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": str(e)}


def process_user_interaction_gradio(user_input: str, provider_name: str, model_display_name: str, chat_history_for_prompt: list[dict], custom_system_prompt: str = None, ui_api_key_override: str = None):
    process_start_time = time.time()
    request_id = os.urandom(4).hex()
    logger.info(f"PUI_GRADIO [{request_id}] Start. User: '{user_input[:50]}...' Provider: {provider_name}/{model_display_name} Hist_len:{len(chat_history_for_prompt)}")
    history_str_for_prompt = "\n".join([f"{('User' if t_msg['role'] == 'user' else 'AI')}: {t_msg['content']}" for t_msg in chat_history_for_prompt[-(MAX_HISTORY_TURNS * 2):]])
    yield "status", "<i>[Checking guidelines (semantic search)...]</i>"
    initial_insights = retrieve_rules_semantic(f"{user_input}\n{history_str_for_prompt}", k=5)
    initial_insights_ctx_str, parsed_initial_insights_list = format_insights_for_prompt(initial_insights)
    logger.info(f"PUI_GRADIO [{request_id}]: Initial RAG (insights) found {len(initial_insights)}. Context: {initial_insights_ctx_str[:150]}...")
    action_type, action_input_dict = "quick_respond", {}
    user_input_lower = user_input.lower()
    time_before_tool_decision = time.time()
    if WEB_SEARCH_ENABLED and ("http://" in user_input or "https://" in user_input):
        url_match = re.search(r'(https?://[^\s]+)', user_input)
        if url_match: action_type, action_input_dict = "scrape_url_and_report", {"url": url_match.group(1)}
    if action_type == "quick_respond" and len(user_input.split()) <= 3 and any(kw in user_input_lower for kw in ["hello", "hi", "thanks", "ok", "bye"]) and not "?" in user_input: pass
    elif action_type == "quick_respond" and WEB_SEARCH_ENABLED and (len(user_input.split()) > 3 or "?" in user_input or any(w in user_input_lower for w in ["what is", "how to", "explain", "search for"])):
        yield "status", "<i>[LLM choosing best approach...]</i>"
        history_snippet = "\n".join([f"{msg['role']}: {msg['content'][:100]}" for msg in chat_history_for_prompt[-2:]])
        guideline_snippet = initial_insights_ctx_str[:200].replace('\n', ' ')
        tool_sys_prompt = "You are a precise routing agent... Output JSON only. Example: {\"action\": \"search_duckduckgo_and_report\", \"action_input\": {\"search_engine_query\": \"query\"}}"
        tool_user_prompt = f"User Query: \"{user_input}\nRecent History:\n{history_snippet}\nGuidelines: {guideline_snippet}...\nAvailable Actions: quick_respond, answer_using_conversation_memory, search_duckduckgo_and_report, scrape_url_and_report.\nSelect one action and input. Output JSON."
        tool_decision_messages = [{"role":"system", "content": tool_sys_prompt}, {"role":"user", "content": tool_user_prompt}]
        tool_provider, tool_model_id = TOOL_DECISION_PROVIDER_ENV, TOOL_DECISION_MODEL_ID_ENV
        tool_model_display = next((dn for dn, mid in MODELS_BY_PROVIDER.get(tool_provider.lower(), {}).get("models", {}).items() if mid == tool_model_id), None)
        if not tool_model_display: tool_model_display = get_default_model_display_name_for_provider(tool_provider)
        if tool_model_display:
            try:
                logger.info(f"PUI_GRADIO [{request_id}]: Tool decision LLM: {tool_provider}/{tool_model_display}")
                tool_resp_chunks = list(call_model_stream(provider=tool_provider, model_display_name=tool_model_display, messages=tool_decision_messages, temperature=0.0, max_tokens=150))
                tool_resp_raw = "".join(tool_resp_chunks).strip()
                json_match_tool = re.search(r"\{.*\}", tool_resp_raw, re.DOTALL)
                if json_match_tool:
                    action_data = json.loads(json_match_tool.group(0))
                    action_type, action_input_dict = action_data.get("action", "quick_respond"), action_data.get("action_input", {})
                    if not isinstance(action_input_dict, dict): action_input_dict = {}
                    logger.info(f"PUI_GRADIO [{request_id}]: LLM Tool Decision: Action='{action_type}', Input='{action_input_dict}'")
                else: logger.warning(f"PUI_GRADIO [{request_id}]: Tool decision LLM non-JSON. Raw: {tool_resp_raw}")
            except Exception as e: logger.error(f"PUI_GRADIO [{request_id}]: Tool decision LLM error: {e}", exc_info=False)
        else: logger.error(f"No model for tool decision provider {tool_provider}.")
    elif action_type == "quick_respond" and not WEB_SEARCH_ENABLED and (len(user_input.split()) > 4 or "?" in user_input or any(w in user_input_lower for w in ["remember","recall"])):
        action_type="answer_using_conversation_memory"
    logger.info(f"PUI_GRADIO [{request_id}]: Tool decision logic took {time.time() - time_before_tool_decision:.3f}s. Action: {action_type}, Input: {action_input_dict}")
    yield "status", f"<i>[Path: {action_type}. Preparing response...]</i>"
    final_system_prompt_str, final_user_prompt_content_str = custom_system_prompt or DEFAULT_SYSTEM_PROMPT, ""
    if action_type == "quick_respond":
        final_system_prompt_str += " Respond directly using guidelines & history."
        final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nQuery: \"{user_input}\"\nResponse:"
    elif action_type == "answer_using_conversation_memory":
        yield "status", "<i>[Searching conversation memory (semantic)...]</i>"
        retrieved_mems = retrieve_memories_semantic(f"User query: {user_input}\nContext:\n{history_str_for_prompt[-1000:]}", k=2)
        memory_context = "Relevant Past Interactions:\n" + "\n".join([f"- User:{m.get('user_input','')}->AI:{m.get('bot_response','')} (Takeaway:{m.get('metrics',{}).get('takeaway','N/A')})" for m in retrieved_mems]) if retrieved_mems else "No relevant past interactions found."
        final_system_prompt_str += " Respond using Memory Context, guidelines, & history."
        final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nMemory Context:\n{memory_context}\nQuery: \"{user_input}\"\nResponse (use memory context if relevant):"
    elif WEB_SEARCH_ENABLED and action_type in ["search_duckduckgo_and_report", "scrape_url_and_report"]:
        query_or_url = action_input_dict.get("search_engine_query") if "search" in action_type else action_input_dict.get("url")
        if not query_or_url:
            final_system_prompt_str += " Respond directly (web action failed: no input)."
            final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nQuery: \"{user_input}\"\nResponse:"
        else:
            yield "status", f"<i>[Web: '{query_or_url[:60]}'...]</i>"
            web_results, max_results = [], 1 if action_type == "scrape_url_and_report" else 2
            try:
                if action_type == "search_duckduckgo_and_report": web_results = search_and_scrape_duckduckgo(query_or_url, num_results=max_results)
                elif action_type == "scrape_url_and_report":
                    res = scrape_url(query_or_url)
                    if res and (res.get("content") or res.get("error")): web_results = [res]
            except Exception as e: web_results = [{"url": query_or_url, "title": "Tool Error", "error": str(e)}]
            scraped_content = "\n".join([f"Source {i+1}:\nURL:{r.get('url','N/A')}\nTitle:{r.get('title','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:3500]}\n---" for i,r in enumerate(web_results)]) if web_results else f"No results from {action_type} for '{query_or_url}'."
            yield "status", "<i>[Synthesizing web report...]</i>"
            final_system_prompt_str += " Generate report/answer from web content, history, & guidelines. Cite URLs as [Source X]."
            final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nWeb Content:\n{scraped_content}\nQuery: \"{user_input}\"\nReport/Response (cite sources [Source X]):"
    else:
        final_system_prompt_str += " Respond directly (unknown action path)."
        final_user_prompt_content_str = f"History:\n{history_str_for_prompt}\nGuidelines:\n{initial_insights_ctx_str}\nQuery: \"{user_input}\"\nResponse:"
    final_llm_messages = [{"role": "system", "content": final_system_prompt_str}, {"role": "user", "content": final_user_prompt_content_str}]
    logger.debug(f"PUI_GRADIO [{request_id}]: Final LLM System Prompt: {final_system_prompt_str[:200]}...")
    logger.debug(f"PUI_GRADIO [{request_id}]: Final LLM User Prompt Start: {final_user_prompt_content_str[:200]}...")
    streamed_response, time_before_llm = "", time.time()
    try:
        for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=final_llm_messages, api_key_override=ui_api_key_override, temperature=0.6, max_tokens=2500):
            if isinstance(chunk, str) and chunk.startswith("Error:"): streamed_response += f"\n{chunk}\n"; yield "response_chunk", f"\n{chunk}\n"; break
            streamed_response += chunk; yield "response_chunk", chunk
    except Exception as e: streamed_response += f"\n\n(Error: {str(e)[:150]})"; yield "response_chunk", f"\n\n(Error: {str(e)[:150]})"
    logger.info(f"PUI_GRADIO [{request_id}]: Main LLM stream took {time.time() - time_before_llm:.3f}s.")
    final_bot_text = streamed_response.strip() or "(No response or error.)"
    logger.info(f"PUI_GRADIO [{request_id}]: Finished. Total: {time.time() - process_start_time:.2f}s. Resp len: {len(final_bot_text)}")
    yield "final_response_and_insights", {"response": final_bot_text, "insights_used": parsed_initial_insights_list}

def perform_post_interaction_learning(user_input: str, bot_response: str, provider: str, model_disp_name: str, insights_reflected: list[dict], api_key_override: str = None):
    task_id = os.urandom(4).hex()
    logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: START User='{user_input[:40]}...', Bot='{bot_response[:40]}...'")
    learning_start_time = time.time()
    significant_learnings_summary = [] # To store summaries of new core learnings

    try:
        metrics = generate_interaction_metrics(user_input, bot_response, provider, model_disp_name, api_key_override)
        logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Metrics: {metrics}")
        add_memory_entry(user_input, metrics, bot_response)

        summary = f"User:\"{user_input}\"\nAI:\"{bot_response}\"\nMetrics(takeaway):{metrics.get('takeaway','N/A')},Success:{metrics.get('response_success_score','N/A')}"
        existing_rules_ctx = "\n".join([f"- \"{r}\"" for r in retrieve_rules_semantic(f"{summary}\n{user_input}", k=10)]) or "No existing rules context."

        insight_sys_prompt = """You are an expert AI knowledge base curator. Your primary function is to meticulously analyze an interaction and update the AI's guiding principles (insights/rules) to improve its future performance and self-understanding.
**CRITICAL OUTPUT REQUIREMENT: You MUST output a single, valid XML structure representing a list of operation objects.**
The root element should be `<operations_list>`. Each operation should be an `<operation>` element.
If no operations are warranted, output an empty list: `<operations_list></operations_list>`.
ABSOLUTELY NO other text, explanations, or markdown should precede or follow this XML structure.
Each `<operation>` element must contain the following child elements:
1.  `<action>`: A string, either `"add"` (for entirely new rules) or `"update"` (to replace an existing rule with a better one).
2.  `<insight>`: The full, refined insight text including its `[TYPE|SCORE]` prefix (e.g., `[CORE_RULE|1.0] My name is Lumina, an AI assistant.`). Multi-line insight text can be placed directly within this tag; XML handles newlines naturally.
3.  `<old_insight_to_replace>`: (ONLY for `"update"` action) The *exact, full text* of an existing insight that the new `<insight>` should replace. If action is `"add"`, this element should be omitted or empty.
**XML Structure Example:**
<operations_list>
  <operation>
    <action>update</action>
    <insight>[CORE_RULE|1.0] I am Lumina, an AI assistant.
My purpose is to help with research.</insight>
    <old_insight_to_replace>[CORE_RULE|0.9] My name is Assistant.</old_insight_to_replace>
  </operation>
  <operation>
    <action>add</action>
    <insight>[RESPONSE_PRINCIPLE|0.8] User prefers short answers.
Provide details only when asked.</insight>
  </operation>
</operations_list>
**Your Reflection Process (Consider each step and generate operations accordingly):**
- **STEP 1: CORE IDENTITY/PURPOSE:** Review the interaction and existing rules. Identify if the interaction conflicts with, clarifies, or reinforces your core identity (name, fundamental nature, primary purpose). If necessary, propose updates or additions to CORE_RULEs. Aim for a single, consistent set of CORE_RULEs over time by updating older versions.
- **STEP 2: NEW LEARNINGS:** Based *only* on the "Interaction Summary", identify concrete, factual information, user preferences, or skills demonstrated that were not previously known or captured. These should be distinct, actionable learnings. Formulate these as new [GENERAL_LEARNING] or specific [BEHAVIORAL_ADJUSTMENT] rules. Do NOT add rules that are already covered by existing relevant rules.
- **STEP 3: REFINEMENT/ADJUSTMENT:** Review existing non-core rules ([RESPONSE_PRINCIPLE], [BEHAVIORAL_ADJUSTMENT], [GENERAL_LEARNING]) retrieved as "Potentially Relevant Existing Rules". Determine if the interaction indicates any of these rules need refinement, adjustment, or correction. Update existing rules if a better version exists.
**General Guidelines for Insight Content and Actions:**
- Ensure the `<insight>` field always contains the properly formatted insight string: `[TYPE|SCORE] Text`.
- Be precise with `<old_insight_to_replace>` – it must *exactly* match an existing rule string.
- Aim for a comprehensive set of operations.
"""
        insight_user_prompt = f"""Interaction Summary:\n{summary}\n
Potentially Relevant Existing Rules (Review these carefully. Your main goal is to consolidate CORE_RULEs and then identify other changes/additions based on the Interaction Summary and these existing rules):\n{existing_rules_ctx}\n
Guiding principles that were considered during THIS interaction (these might offer clues for new rules or refinements):\n{json.dumps([p['original'] for p in insights_reflected if 'original' in p]) if insights_reflected else "None"}\n
Task: Based on your three-step reflection process (Core Identity, New Learnings, Refinements):
1.  **Consolidate CORE_RULEs:** Merge similar identity/purpose rules from "Potentially Relevant Existing Rules" into single, definitive statements using "update" operations. Replace multiple old versions with the new canonical one.
2.  **Add New Learnings:** Identify and "add" any distinct new facts, skills, or important user preferences learned from the "Interaction Summary".
3.  **Update Existing Principles:** "Update" any non-core principles from "Potentially Relevant Existing Rules" if the "Interaction Summary" provided a clear refinement.
Combine all findings into a single, valid XML structure as specified in the system prompt (root `<operations_list>`, with child `<operation>` elements). Output XML ONLY.
"""
        insight_msgs = [{"role":"system", "content":insight_sys_prompt}, {"role":"user", "content":insight_user_prompt}]
        insight_prov, insight_model_disp = provider, model_disp_name
        insight_env_model = os.getenv("INSIGHT_MODEL_OVERRIDE")
        if insight_env_model and "/" in insight_env_model:
            i_p, i_id = insight_env_model.split('/', 1)
            i_d_n = next((dn for dn, mid in MODELS_BY_PROVIDER.get(i_p.lower(), {}).get("models", {}).items() if mid == i_id), None)
            if i_d_n: insight_prov, insight_model_disp = i_p, i_d_n
        logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Generating insights with {insight_prov}/{insight_model_disp} (expecting XML)")

        raw_ops_xml_full = "".join(list(call_model_stream(provider=insight_prov, model_display_name=insight_model_disp, messages=insight_msgs, api_key_override=api_key_override, temperature=0.0, max_tokens=3500))).strip()

        ops_data_list, processed_count = [], 0

        xml_match = re.search(r"```xml\s*(<operations_list>.*</operations_list>)\s*```", raw_ops_xml_full, re.DOTALL | re.IGNORECASE) or \
                    re.search(r"(<operations_list>.*</operations_list>)", raw_ops_xml_full, re.DOTALL | re.IGNORECASE)

        if xml_match:
            xml_content_str = xml_match.group(1)
            try:
                root = ET.fromstring(xml_content_str)
                if root.tag == "operations_list":
                    for op_element in root.findall("operation"):
                        action_el = op_element.find("action")
                        insight_el = op_element.find("insight")
                        old_insight_el = op_element.find("old_insight_to_replace")

                        action = action_el.text.strip().lower() if action_el is not None and action_el.text else None
                        insight_text = insight_el.text.strip() if insight_el is not None and insight_el.text else None
                        old_insight_text = old_insight_el.text.strip() if old_insight_el is not None and old_insight_el.text else None

                        if action and insight_text:
                            ops_data_list.append({
                                "action": action,
                                "insight": insight_text,
                                "old_insight_to_replace": old_insight_text
                            })
                        else:
                            logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Skipped XML operation due to missing action or insight text. Action: {action}, Insight: {insight_text}")
                else:
                    logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML root tag is not <operations_list>. Found: {root.tag}. XML content:\n{xml_content_str}")
            except ET.ParseError as e:
                logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML parsing error: {e}. XML content that failed:\n{xml_content_str}")
            except Exception as e_xml_proc:
                logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: Error processing parsed XML: {e_xml_proc}. XML content:\n{xml_content_str}")
        else:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No <operations_list> XML structure found in LLM output. Full raw output:\n{raw_ops_xml_full}")

        if ops_data_list:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: LLM provided {len(ops_data_list)} insight ops from XML.")
            for op_idx, op_data in enumerate(ops_data_list):
                action = op_data["action"]
                insight_text = op_data["insight"]
                old_insight = op_data["old_insight_to_replace"]

                if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", insight_text, re.I|re.DOTALL):
                    logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to invalid insight_text format from XML: '{insight_text[:100]}...'")
                    continue

                rule_added_or_updated = False
                if action == "add":
                    success, status_msg = add_rule_entry(insight_text)
                    if success:
                        processed_count +=1
                        rule_added_or_updated = True
                        if insight_text.upper().startswith("[CORE_RULE"):
                            significant_learnings_summary.append(f"New Core Rule Added: {insight_text}")
                    else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (add from XML): Failed to add rule '{insight_text[:50]}...'. Status: {status_msg}")
                elif action == "update":
                    removed_old = False
                    if old_insight:
                        if old_insight != insight_text:
                            remove_success = remove_rule_entry(old_insight)
                            if not remove_success:
                                 logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to remove old rule '{old_insight[:50]}...' before adding new.")
                            else:
                                removed_old = True
                        else:
                             logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Old insight is identical to new insight. Skipping removal.")

                    success, status_msg = add_rule_entry(insight_text)
                    if success:
                        processed_count +=1
                        rule_added_or_updated = True
                        if insight_text.upper().startswith("[CORE_RULE"):
                             significant_learnings_summary.append(f"Core Rule Updated (Old: {'Removed' if removed_old else 'Not removed/Same'}, New: {insight_text})")
                    else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to add/update rule '{insight_text[:50]}...'. Status: {status_msg}")
                else:
                    logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to unknown action '{action}' from XML.")

            # After processing all rules, if there were significant learnings, add a special memory
            if significant_learnings_summary:
                learning_digest = "SYSTEM CORE LEARNING DIGEST:\n" + "\n".join(significant_learnings_summary)
                # Create a synthetic metrics object for this system memory
                system_metrics = {
                    "takeaway": "Core knowledge refined.",
                    "response_success_score": 1.0, # Assuming successful internal update
                    "future_confidence_score": 1.0,
                    "type": "SYSTEM_REFLECTION"
                }
                add_memory_entry(
                    user_input="SYSTEM_INTERNAL_REFLECTION_TRIGGER", # Fixed identifier
                    metrics=system_metrics,
                    bot_response=learning_digest
                )
                logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Added CORE_LEARNING_DIGEST to memories: {learning_digest[:100]}...")

            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Processed {processed_count} insight ops out of {len(ops_data_list)} received from XML.")
        else:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No valid insight operations derived from LLM's XML output.")

    except Exception as e: logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: CRITICAL ERROR in learning task: {e}", exc_info=True)
    logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: END. Total: {time.time() - learning_start_time:.2f}s")


def handle_gradio_chat_submit(user_msg_txt: str, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
    global current_chat_session_history
    cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
    # Initialize all potential output components with default/current values
    updated_rules_text = ui_refresh_rules_display_fn() # Get current rules state
    updated_mems_json = ui_refresh_memories_display_fn() # Get current memories state
    def_detect_out_md = gr.Markdown(visible=False)
    def_fmt_out_txt = gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True)
    def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)

    if not user_msg_txt.strip():
        status_txt = "Error: Empty message."
        updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
        # Ensure all outputs are provided on early exit
        yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)
        return

    updated_gr_hist.append((user_msg_txt, "<i>Thinking...</i>"))
    # Initial yield to update chat UI with thinking message and show current knowledge base state
    yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)

    internal_hist = list(current_chat_session_history); internal_hist.append({"role": "user", "content": user_msg_txt})
    # History truncation logic (keep MAX_HISTORY_TURNS pairs + optional system prompt)
    hist_len_check = MAX_HISTORY_TURNS * 2
    if internal_hist and internal_hist[0]["role"] == "system": hist_len_check +=1
    if len(internal_hist) > hist_len_check:
         current_chat_session_history = ([internal_hist[0]] if internal_hist[0]["role"] == "system" else []) + internal_hist[-(MAX_HISTORY_TURNS * 2):]
         internal_hist = list(current_chat_session_history) # Use truncated history for current turn processing

    final_bot_resp_acc, insights_used_parsed = "", []
    temp_dl_file_path = None

    try:
        processor_gen = process_user_interaction_gradio(user_input=user_msg_txt, provider_name=sel_prov_name, model_display_name=sel_model_disp_name, chat_history_for_prompt=internal_hist, custom_system_prompt=cust_sys_prompt.strip() or None, ui_api_key_override=ui_api_key.strip() if ui_api_key else None)
        curr_bot_disp_msg = ""
        for upd_type, upd_data in processor_gen:
            if upd_type == "status":
                status_txt = upd_data
                if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
                    # Update the status alongside the streaming message
                    updated_gr_hist[-1] = (user_msg_txt, f"{curr_bot_disp_msg} <i>{status_txt}</i>" if curr_bot_disp_msg else f"<i>{status_txt}</i>")
            elif upd_type == "response_chunk":
                curr_bot_disp_msg += upd_data
                if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
                    updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg) # Update chat with streamed chunk
            elif upd_type == "final_response_and_insights":
                final_bot_resp_acc, insights_used_parsed = upd_data["response"], upd_data["insights_used"]
                status_txt = "Response generated. Processing learning..."
                # Ensure the final chat message reflects the full response
                if not curr_bot_disp_msg and final_bot_resp_acc : curr_bot_disp_msg = final_bot_resp_acc
                if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
                    updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg or "(No text)")

                # Update detailed response box and download button
                def_fmt_out_txt = gr.Textbox(value=curr_bot_disp_msg, interactive=True, show_copy_button=True)

                if curr_bot_disp_msg and not curr_bot_disp_msg.startswith("Error:"):
                    try:
                        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", encoding='utf-8') as tmpfile:
                            tmpfile.write(curr_bot_disp_msg)
                            temp_dl_file_path = tmpfile.name
                        def_dl_btn = gr.DownloadButton(value=temp_dl_file_path, visible=True, interactive=True)
                    except Exception as e:
                        logger.error(f"Error creating temp file for download: {e}", exc_info=False)
                        def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False, label="Download Error")
                else:
                    def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)

                # Update insights display
                insights_md_content = "### Insights Considered (Pre-Response):\n" + ("\n".join([f"- **[{i.get('type','N/A')}|{i.get('score','N/A')}]** {i.get('text','N/A')[:100]}..." for i in insights_used_parsed[:3]]) if insights_used_parsed else "*None specific.*")
                def_detect_out_md = gr.Markdown(value=insights_md_content, visible=True if insights_used_parsed else False)

            # Yield intermediate updates for the UI
            # Pass the *current* state of rules and memories display components
            yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)

            # Stop processing generator after final_response_and_insights
            if upd_type == "final_response_and_insights": break

    except Exception as e:
        logger.error(f"Chat handler error during main processing: {e}", exc_info=True); status_txt = f"Error: {str(e)[:100]}"
        error_message_for_chat = f"Sorry, an error occurred during response generation: {str(e)[:100]}"
        if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
            updated_gr_hist[-1] = (user_msg_txt, error_message_for_chat)
        else:
            updated_gr_hist.append((user_msg_txt, error_message_for_chat))
        def_fmt_out_txt = gr.Textbox(value=error_message_for_chat, interactive=True)
        def_dl_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
        def_detect_out_md = gr.Markdown(value="*Error processing request.*", visible=True)

        # Provide the current state of rules/memories on error path yield
        current_rules_text_on_error = ui_refresh_rules_display_fn()
        current_mems_json_on_error = ui_refresh_memories_display_fn()

        yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, current_rules_text_on_error, current_mems_json_on_error)
        # Clean up temp file if created before error
        if temp_dl_file_path and os.path.exists(temp_dl_file_path):
            try: os.unlink(temp_dl_file_path)
            except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path} after error: {e_unlink}")
        return # Exit the function after error handling

    # --- Post-Interaction Learning ---
    if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
        # Add the successful turn to the internal history
        current_chat_session_history.extend([{"role": "user", "content": user_msg_txt}, {"role": "assistant", "content": final_bot_resp_acc}])
        # History truncation again after adding
        hist_len_check = MAX_HISTORY_TURNS * 2
        if current_chat_session_history and current_chat_session_history[0]["role"] == "system": hist_len_check +=1
        if len(current_chat_session_history) > hist_len_check:
            current_chat_session_history = ([current_chat_session_history[0]] if current_chat_session_history[0]["role"] == "system" else []) + current_chat_session_history[-(MAX_HISTORY_TURNS * 2):]

        status_txt = "<i>[Performing post-interaction learning...]</i>"
        # Yield status before synchronous learning
        current_rules_text_before_learn = ui_refresh_rules_display_fn()
        current_mems_json_before_learn = ui_refresh_memories_display_fn()
        yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, current_rules_text_before_learn, current_mems_json_before_learn)

        try:
            perform_post_interaction_learning(
                user_input=user_msg_txt,
                bot_response=final_bot_resp_acc,
                provider=sel_prov_name,
                model_disp_name=sel_model_disp_name,
                insights_reflected=insights_used_parsed,
                api_key_override=ui_api_key.strip() if ui_api_key else None
            )
            status_txt = "Response & Learning Complete."
        except Exception as e_learn:
            logger.error(f"Error during post-interaction learning: {e_learn}", exc_info=True)
            status_txt = "Response complete. Error during learning."

    elif final_bot_resp_acc.startswith("Error:"):
        status_txt = final_bot_resp_acc
        # If it was an error response from the generator, it's already in updated_gr_hist[-1]
        # The other output components (fmt_report_tb, dl_btn, detect_out_md) are already set by the generator loop or default state
    else:
        status_txt = "Processing finished; no valid response or error occurred during main phase."


    # Final yield after learning (or error handling)
    # This final yield updates the UI one last time with the true final status
    # AND crucially refreshes the Rules and Memories displays in case they changed during learning.
    updated_rules_text = ui_refresh_rules_display_fn()
    updated_mems_json = ui_refresh_memories_display_fn()

    yield (cleared_input, updated_gr_hist, status_txt, def_detect_out_md, def_fmt_out_txt, def_dl_btn, updated_rules_text, updated_mems_json)

    # Clean up the temporary download file after the final yield
    if temp_dl_file_path and os.path.exists(temp_dl_file_path):
        try: os.unlink(temp_dl_file_path)
        except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path}: {e_unlink}")


# --- Startup Loading Functions ---
def load_rules_from_file(filepath: str | None):
    """Loads rules from a local file (.txt or .jsonl) and adds them to the system."""
    if not filepath:
        logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.")
        return 0, 0, 0 # added, skipped, errors

    if not os.path.exists(filepath):
        logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.")
        return 0, 0, 0

    added_count, skipped_count, error_count = 0, 0, 0
    potential_rules = []

    try:
        with open(filepath, 'r', encoding='utf-8') as f:
            content = f.read()
    except Exception as e:
        logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False)
        return 0, 0, 1 # Indicate read error

    if not content.strip():
        logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.")
        return 0, 0, 0

    file_name_lower = filepath.lower()

    if file_name_lower.endswith(".txt"):
        potential_rules = content.split("\n\n---\n\n")
        # Also handle simple line breaks if '---' separator is not used
        if len(potential_rules) == 1 and "\n" in content:
             potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
    elif file_name_lower.endswith(".jsonl"):
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try:
                    # Expecting each line to be a JSON string containing the rule text
                    rule_text_in_json_string = json.loads(line)
                    if isinstance(rule_text_in_json_string, str):
                        potential_rules.append(rule_text_in_json_string)
                    else:
                        logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}")
                        error_count +=1
                except json.JSONDecodeError:
                    logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}")
                    error_count +=1
    else:
        logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl")
        return 0, 0, 1 # Indicate type error

    valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
    total_to_process = len(valid_potential_rules)

    if total_to_process == 0 and error_count == 0:
        logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.")
        return 0, 0, 0
    elif total_to_process == 0 and error_count > 0:
         logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.")
         return 0, 0, error_count # Indicate only errors

    logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...")
    for idx, rule_text in enumerate(valid_potential_rules):
        success, status_msg = add_rule_entry(rule_text)
        if success:
            added_count += 1
        elif status_msg == "duplicate":
            skipped_count += 1
        else:
            logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}")
            error_count += 1

    logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.")
    return added_count, skipped_count, error_count

def load_memories_from_file(filepath: str | None):
    """Loads memories from a local file (.json or .jsonl) and adds them to the system."""
    if not filepath:
        logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.")
        return 0, 0, 0 # added, format_errors, save_errors

    if not os.path.exists(filepath):
        logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.")
        return 0, 0, 0

    added_count, format_error_count, save_error_count = 0, 0, 0
    memory_objects_to_process = []

    try:
        with open(filepath, 'r', encoding='utf-8') as f:
            content = f.read()
    except Exception as e:
        logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False)
        return 0, 1, 0 # Indicate read error

    if not content.strip():
        logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.")
        return 0, 0, 0

    file_ext = os.path.splitext(filepath.lower())[1]

    if file_ext == ".json":
        try:
            parsed_json = json.loads(content)
            if isinstance(parsed_json, list):
                memory_objects_to_process = parsed_json
            elif isinstance(parsed_json, dict):
                 # If it's a single object, process it as a list of one
                 memory_objects_to_process = [parsed_json]
            else:
                logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}")
                format_error_count = 1
        except json.JSONDecodeError as e:
            logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}")
            format_error_count = 1
    elif file_ext == ".jsonl":
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try:
                    memory_objects_to_process.append(json.loads(line))
                except json.JSONDecodeError:
                    logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}")
                    format_error_count += 1
    else:
        logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl")
        return 0, 1, 0 # Indicate type error

    total_to_process = len(memory_objects_to_process)

    if total_to_process == 0 and format_error_count > 0 :
         logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.")
         return 0, format_error_count, 0
    elif total_to_process == 0:
         logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.")
         return 0, 0, 0


    logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...")
    for idx, mem_data in enumerate(memory_objects_to_process):
        # Validate minimum structure
        if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
            # Add entry without generating new embeddings if possible (assuming file contains embeddings)
            # NOTE: The current add_memory_entry function *always* generates embeddings.
            # If performance is an issue with large files, memory_logic might need
            # an optimized bulk import function that reuses existing embeddings or
            # generates them in batches. For now, we use the existing function.
            success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"]) # add_memory_entry needs user_input, metrics, bot_response
            if success:
                added_count += 1
            else:
                # add_memory_entry currently doesn't return detailed error status
                logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}")
                save_error_count += 1
        else:
            logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}")
            format_error_count += 1

    logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.")
    return added_count, format_error_count, save_error_count


# --- UI Functions for Rules and Memories (ui_refresh_..., ui_download_..., ui_upload_...) ---
def ui_refresh_rules_display_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."

def ui_download_rules_action_fn():
    rules_content = "\n\n---\n\n".join(get_all_rules_cached())
    if not rules_content.strip():
        gr.Warning("No rules to download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Rules")
    try:
        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt", encoding='utf-8') as tmpfile:
            tmpfile.write(rules_content)
            return tmpfile.name
    except Exception as e:
        logger.error(f"Error creating rules download file: {e}")
        gr.Error(f"Failed to prepare rules for download: {e}")
        return gr.DownloadButton(value=None, interactive=False, label="Error")

def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
    if not uploaded_file_obj: return "No file provided for rules upload."
    try:
        with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
    except Exception as e_read: return f"Error reading file: {e_read}"
    if not content.strip(): return "Uploaded rules file is empty."
    added_count, skipped_count, error_count = 0,0,0

    potential_rules = []
    file_name_lower = uploaded_file_obj.name.lower()

    if file_name_lower.endswith(".txt"):
        potential_rules = content.split("\n\n---\n\n")
        if len(potential_rules) == 1 and "\n" in content:
             potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
    elif file_name_lower.endswith(".jsonl"):
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try:
                    rule_text_in_json_string = json.loads(line)
                    if isinstance(rule_text_in_json_string, str):
                        potential_rules.append(rule_text_in_json_string)
                    else:
                        logger.warning(f"Rule Upload (JSONL): Line {line_num+1} did not contain a string value. Got: {type(rule_text_in_json_string)}")
                        error_count +=1
                except json.JSONDecodeError:
                    logger.warning(f"Rule Upload (JSONL): Line {line_num+1} failed to parse as JSON: {line[:100]}")
                    error_count +=1
    else:
        return "Unsupported file type for rules. Please use .txt or .jsonl."

    valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
    total_to_process = len(valid_potential_rules)

    if total_to_process == 0 and error_count == 0:
        return "No valid rules found in file to process."
    elif total_to_process == 0 and error_count > 0:
        return f"No valid rules found to process. Encountered {error_count} parsing/format errors."

    progress(0, desc="Starting rules upload...")
    for idx, rule_text in enumerate(valid_potential_rules):
        success, status_msg = add_rule_entry(rule_text)
        if success: added_count += 1
        elif status_msg == "duplicate": skipped_count += 1
        else: error_count += 1
        progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} rules...")

    msg = f"Rules Upload: Total valid rule segments processed: {total_to_process}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors (parsing/add): {error_count}."
    logger.info(msg); return msg

def ui_refresh_memories_display_fn(): return get_all_memories_cached() or []

def ui_download_memories_action_fn():
    memories = get_all_memories_cached()
    if not memories:
        gr.Warning("No memories to download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Memories")

    jsonl_content = ""
    for mem_dict in memories:
        try: jsonl_content += json.dumps(mem_dict) + "\n"
        except Exception as e: logger.error(f"Error serializing memory for download: {mem_dict}, Error: {e}")

    if not jsonl_content.strip():
        gr.Warning("No valid memories to serialize for download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Data")
    try:
        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".jsonl", encoding='utf-8') as tmpfile:
            tmpfile.write(jsonl_content)
            return tmpfile.name
    except Exception as e:
        logger.error(f"Error creating memories download file: {e}")
        gr.Error(f"Failed to prepare memories for download: {e}")
        return gr.DownloadButton(value=None, interactive=False, label="Error")

def ui_upload_memories_action_fn(uploaded_file_obj, progress=gr.Progress()):
    if not uploaded_file_obj: return "No file provided for memories upload."
    try:
        with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
    except Exception as e_read: return f"Error reading file: {e_read}"
    if not content.strip(): return "Uploaded memories file is empty."
    added_count, format_error_count, save_error_count = 0,0,0
    memory_objects_to_process = []

    file_ext = os.path.splitext(uploaded_file_obj.name.lower())[1]

    if file_ext == ".json":
        try:
            parsed_json = json.loads(content)
            if isinstance(parsed_json, list):
                memory_objects_to_process = parsed_json
            elif isinstance(parsed_json, dict):
                 memory_objects_to_process = [parsed_json]
            else:
                logger.warning(f"Memories Upload (.json): File content is not a JSON list or object. Type: {type(parsed_json)}")
                format_error_count = 1
        except json.JSONDecodeError as e:
            logger.warning(f"Memories Upload (.json): Invalid JSON file. Error: {e}")
            format_error_count = 1
    elif file_ext == ".jsonl":
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try:
                    memory_objects_to_process.append(json.loads(line))
                except json.JSONDecodeError:
                    logger.warning(f"Memories Upload (.jsonl): Line {line_num+1} parse error: {line[:100]}")
                    format_error_count += 1
    else:
        return "Unsupported file type for memories. Please use .json or .jsonl."

    if not memory_objects_to_process and format_error_count > 0 :
         return f"Memories Upload: File parsing failed. Found {format_error_count} format errors and no processable objects."
    elif not memory_objects_to_process:
         return "No valid memory objects found in the uploaded file."

    total_to_process = len(memory_objects_to_process)
    if total_to_process == 0: return "No memory objects to process (after parsing)."

    progress(0, desc="Starting memories upload...")
    for idx, mem_data in enumerate(memory_objects_to_process):
        if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
            success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
            if success: added_count += 1
            else: save_error_count += 1
        else:
            logger.warning(f"Memories Upload: Skipped invalid memory object structure: {str(mem_data)[:100]}")
            format_error_count += 1
        progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} memories...")

    msg = f"Memories Upload: Processed {total_to_process} objects. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}."
    logger.info(msg); return msg

def save_edited_rules_action_fn(edited_rules_text: str, progress=gr.Progress()):
    # --- DEMO MODE CHANGE ---
    if DEMO_MODE:
        gr.Warning("Saving edited rules is disabled in Demo Mode.")
        return "Saving edited rules is disabled in Demo Mode."

    if not edited_rules_text.strip():
        return "No rules text to save."

    potential_rules = edited_rules_text.split("\n\n---\n\n")
    if len(potential_rules) == 1 and "\n" in edited_rules_text:
        potential_rules = [r.strip() for r in edited_rules_text.splitlines() if r.strip()]

    if not potential_rules:
        return "No rules found to process from editor."

    added, skipped, errors = 0, 0, 0
    unique_rules_to_process = sorted(list(set(filter(None, [r.strip() for r in potential_rules]))))

    total_unique = len(unique_rules_to_process)
    if total_unique == 0: return "No unique, non-empty rules found in editor text."

    progress(0, desc=f"Saving {total_unique} unique rules from editor...")

    for idx, rule_text in enumerate(unique_rules_to_process):
        success, status_msg = add_rule_entry(rule_text)
        if success: added += 1
        elif status_msg == "duplicate": skipped += 1
        else: errors += 1
        progress((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...")

    return f"Editor Save: Added: {added}, Skipped (duplicates): {skipped}, Errors/Invalid: {errors} from {total_unique} unique rules in text."

def app_load_fn():
    logger.info("App loading. Initializing systems...")
    initialize_memory_system()
    logger.info("Memory system initialized.")

    # --- Load Rules from File ---
    rules_added, rules_skipped, rules_errors = load_rules_from_file(LOAD_RULES_FILE)
    rules_load_msg = f"Rules: Added {rules_added}, Skipped {rules_skipped}, Errors {rules_errors} from {LOAD_RULES_FILE or 'None'}."
    logger.info(rules_load_msg)

    # --- Load Memories from File ---
    mems_added, mems_format_errors, mems_save_errors = load_memories_from_file(LOAD_MEMORIES_FILE)
    mems_load_msg = f"Memories: Added {mems_added}, Format Errors {mems_format_errors}, Save Errors {mems_save_errors} from {LOAD_MEMORIES_FILE or 'None'}."
    logger.info(mems_load_msg)

    final_status = f"AI Systems Initialized. {rules_load_msg} {mems_load_msg} Ready."

    # Initial population of all relevant UI components AFTER loading
    rules_on_load = ui_refresh_rules_display_fn()
    mems_on_load = ui_refresh_memories_display_fn()

    # Return values for outputs defined in demo.load
    return (
        final_status, # agent_stat_tb
        rules_on_load, # rules_disp_ta
        mems_on_load,  # mems_disp_json
        gr.Markdown(visible=False), # detect_out_md (initial state)
        gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True), # fmt_report_tb (initial state)
        gr.DownloadButton(interactive=False, value=None, visible=False), # dl_report_btn (initial state)
    )


# --- Gradio UI Definition ---
with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
        .gr-button { margin: 5px; }
        .gr-textbox, .gr-text-area, .gr-dropdown, .gr-json { border-radius: 8px; }
        .gr-group { border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; }
        .gr-row { gap: 10px; }
        .gr-tab { border-radius: 8px; }
        .status-text { font-size: 0.9em; color: #555; }
        .gr-json { max-height: 300px; overflow-y: auto; } /* Added scrolling for JSON */
    """
) as demo:
    # --- DEMO MODE CHANGE ---
    gr.Markdown(
        f"""
        # πŸ€– AI Research Agent {'(DEMO MODE)' if DEMO_MODE else ''}
        Your intelligent assistant for research and knowledge management
        ### Special thanks to [Groq](https://groq.com) for their blazing fast inference
        
        """,
        elem_classes=["header"]
    )

    is_sqlite = MEMORY_STORAGE_BACKEND == "SQLITE"
    is_hf_dataset = MEMORY_STORAGE_BACKEND == "HF_DATASET"

    with gr.Row(variant="compact"):
        agent_stat_tb = gr.Textbox(
            label="Agent Status", value="Initializing systems...", interactive=False,
            elem_classes=["status-text"], scale=4
        )
        with gr.Column(scale=1, min_width=150):
            memory_backend_info_tb = gr.Textbox(
                label="Memory Backend", value=MEMORY_STORAGE_BACKEND, interactive=False,
                elem_classes=["status-text"]
            )
            sqlite_path_display = gr.Textbox(
                label="SQLite Path", value=MEMORY_SQLITE_PATH, interactive=False,
                visible=is_sqlite, elem_classes=["status-text"]
            )
            hf_repos_display = gr.Textbox(
                label="HF Repos", value=f"M: {MEMORY_HF_MEM_REPO}, R: {MEMORY_HF_RULES_REPO}",
                interactive=False, visible=is_hf_dataset, elem_classes=["status-text"]
            )

    with gr.Row():
        with gr.Sidebar():
            gr.Markdown("## βš™οΈ Configuration")
            with gr.Group():
                gr.Markdown("### AI Model Settings")
                api_key_tb = gr.Textbox(
                    label="AI Provider API Key (Override)", type="password", placeholder="Uses .env if blank"
                )
                available_providers = get_available_providers()
                default_provider = available_providers[0] if available_providers else None
                prov_sel_dd = gr.Dropdown(
                    label="AI Provider", choices=available_providers,
                    value=default_provider, interactive=True
                )
                default_model_display = get_default_model_display_name_for_provider(default_provider) if default_provider else None
                model_sel_dd = gr.Dropdown(
                    label="AI Model",
                    choices=get_model_display_names_for_provider(default_provider) if default_provider else [],
                    value=default_model_display,
                    interactive=True
                )
            with gr.Group():
                gr.Markdown("### System Prompt")
                sys_prompt_tb = gr.Textbox(
                    label="System Prompt Base", lines=8, value=DEFAULT_SYSTEM_PROMPT, interactive=True
                )
            if MEMORY_STORAGE_BACKEND == "RAM":
                save_faiss_sidebar_btn = gr.Button("Save FAISS Indices", variant="secondary")

        with gr.Column(scale=3):
            with gr.Tabs():
                with gr.TabItem("πŸ’¬ Chat & Research"):
                    with gr.Group():
                        gr.Markdown("### AI Chat Interface")
                        main_chat_disp = gr.Chatbot(
                            label=None, height=400, bubble_full_width=False,
                            avatar_images=(None, "https://raw.githubusercontent.com/huggingface/brand-assets/main/hf-logo-with-title.png"),
                            show_copy_button=True, render_markdown=True, sanitize_html=True
                        )
                        with gr.Row(variant="compact"):
                            user_msg_tb = gr.Textbox(
                                show_label=False, placeholder="Ask your research question...",
                                scale=7, lines=1, max_lines=3
                            )
                            send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
                        with gr.Accordion("πŸ“ Detailed Response & Insights", open=False):
                            fmt_report_tb = gr.Textbox(
                                label="Full AI Response", lines=8, interactive=True, show_copy_button=True
                            )
                            dl_report_btn = gr.DownloadButton(
                                "Download Report", value=None, interactive=False, visible=False
                            )
                            detect_out_md = gr.Markdown(visible=False)

                with gr.TabItem("🧠 Knowledge Base"):
                    with gr.Row(equal_height=True):
                        with gr.Column():
                            gr.Markdown("### πŸ“œ Rules Management")
                            rules_disp_ta = gr.TextArea(
                                label="Current Rules", lines=10,
                                placeholder="Rules will appear here.",
                                interactive=True
                            )
                            gr.Markdown("To edit rules, modify the text above and click 'Save Edited Text', or upload a new file.")
                            save_edited_rules_btn = gr.Button("πŸ’Ύ Save Edited Text", variant="primary", interactive=not DEMO_MODE)
                            with gr.Row(variant="compact"):
                                dl_rules_btn = gr.DownloadButton("⬇️ Download Rules", value=None)
                                clear_rules_btn = gr.Button("πŸ—‘οΈ Clear All Rules", variant="stop", visible=not DEMO_MODE)
                            # --- DEMO MODE CHANGE ---
                            upload_rules_fobj = gr.File(
                                label="Upload Rules File (.txt with '---' separators, or .jsonl of rule strings)",
                                file_types=[".txt", ".jsonl"],
                                interactive=not DEMO_MODE
                            )
                            rules_stat_tb = gr.Textbox(
                                label="Rules Status", interactive=False, lines=1, elem_classes=["status-text"]
                            )

                        with gr.Column():
                            gr.Markdown("### πŸ“š Memories Management")
                            mems_disp_json = gr.JSON(
                                label="Current Memories", value=[]
                            )
                            gr.Markdown("To add memories, upload a .jsonl or .json file.")
                            with gr.Row(variant="compact"):
                                dl_mems_btn = gr.DownloadButton("⬇️ Download Memories", value=None)
                                clear_mems_btn = gr.Button("πŸ—‘οΈ Clear All Memories", variant="stop", visible=not DEMO_MODE)
                            # --- DEMO MODE CHANGE ---
                            upload_mems_fobj = gr.File(
                                label="Upload Memories File (.jsonl of memory objects, or .json array of objects)",
                                file_types=[".jsonl", ".json"],
                                interactive=not DEMO_MODE
                            )
                            mems_stat_tb = gr.Textbox(
                                label="Memories Status", interactive=False, lines=1, elem_classes=["status-text"]
                            )

    def dyn_upd_model_dd(sel_prov_dyn: str):
        models_dyn = get_model_display_names_for_provider(sel_prov_dyn)
        def_model_dyn = get_default_model_display_name_for_provider(sel_prov_dyn)
        return gr.Dropdown(choices=models_dyn, value=def_model_dyn, interactive=True)

    prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)

    # Inputs for the main chat submission function
    chat_ins = [user_msg_tb, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
    # Outputs for the main chat submission function (includes knowledge base displays)
    chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, detect_out_md, fmt_report_tb, dl_report_btn, rules_disp_ta, mems_disp_json]

    chat_event_args = {"fn": handle_gradio_chat_submit, "inputs": chat_ins, "outputs": chat_outs}

    send_btn.click(**chat_event_args)
    user_msg_tb.submit(**chat_event_args)

    # Rules Management events
    dl_rules_btn.click(fn=ui_download_rules_action_fn, inputs=None, outputs=dl_rules_btn, show_progress=False)

    save_edited_rules_btn.click(
        fn=save_edited_rules_action_fn,
        inputs=[rules_disp_ta],
        outputs=[rules_stat_tb],
        show_progress="full"
    ).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)

    upload_rules_fobj.upload(
        fn=ui_upload_rules_action_fn,
        inputs=[upload_rules_fobj],
        outputs=[rules_stat_tb],
        show_progress="full"
    ).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)

    clear_rules_btn.click(
        fn=lambda: ("All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules."),
        outputs=rules_stat_tb,
        show_progress=False
    ).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)

    # Memories Management events
    dl_mems_btn.click(fn=ui_download_memories_action_fn, inputs=None, outputs=dl_mems_btn, show_progress=False)

    upload_mems_fobj.upload(
        fn=ui_upload_memories_action_fn,
        inputs=[upload_mems_fobj],
        outputs=[mems_stat_tb],
        show_progress="full"
    ).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False)

    clear_mems_btn.click(
        fn=lambda: ("All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories."),
        outputs=mems_stat_tb,
        show_progress=False
    ).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False)

    # FAISS save button visibility and action (RAM backend only)
    if MEMORY_STORAGE_BACKEND == "RAM" and 'save_faiss_sidebar_btn' in locals():
        def save_faiss_action_with_feedback_sidebar_fn():
            try:
                save_faiss_indices_to_disk()
                gr.Info("Attempted to save FAISS indices to disk.")
            except Exception as e:
                logger.error(f"Error saving FAISS indices: {e}", exc_info=True)
                gr.Error(f"Error saving FAISS indices: {e}")

        save_faiss_sidebar_btn.click(fn=save_faiss_action_with_feedback_sidebar_fn, inputs=None, outputs=None, show_progress=False)


    # --- Initial Load Event ---
    app_load_outputs = [
        agent_stat_tb,
        rules_disp_ta,
        mems_disp_json,
        detect_out_md,
        fmt_report_tb,
        dl_report_btn
    ]
    demo.load(fn=app_load_fn, inputs=None, outputs=app_load_outputs, show_progress="full")


if __name__ == "__main__":
    logger.info(f"Starting Gradio AI Research Mega Agent (v6.5 - Direct UI Update & Core Learning Memories, Memory: {MEMORY_STORAGE_BACKEND})...")
    app_port = int(os.getenv("GRADIO_PORT", 7860))
    app_server = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
    app_debug = os.getenv("GRADIO_DEBUG", "False").lower() == "true"
    app_share = os.getenv("GRADIO_SHARE", "False").lower() == "true"
    logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
    demo.queue().launch(server_name=app_server, server_port=app_port, debug=app_debug, share=app_share)
    logger.info("Gradio application shut down.")