Spaces:
Running
Running
File size: 64,811 Bytes
29f7fc8 72e53c8 29f7fc8 3710d9c 29f7fc8 72e53c8 29f7fc8 3710d9c 29f7fc8 3710d9c 29f7fc8 3710d9c 29f7fc8 72e53c8 29f7fc8 3710d9c 29f7fc8 72e53c8 3710d9c 29f7fc8 72e53c8 29f7fc8 72e53c8 3710d9c 72e53c8 29f7fc8 3710d9c 72e53c8 3710d9c 72e53c8 3710d9c 72e53c8 3710d9c 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 3710d9c 72e53c8 29f7fc8 72e53c8 29f7fc8 3710d9c 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 0439c27 29f7fc8 0439c27 29f7fc8 72e53c8 29f7fc8 0439c27 59842d0 72e53c8 29f7fc8 59842d0 29f7fc8 59842d0 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 59842d0 72e53c8 29f7fc8 59842d0 72e53c8 59842d0 72e53c8 59842d0 72e53c8 59842d0 29f7fc8 0439c27 59842d0 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 72e53c8 29f7fc8 59842d0 29f7fc8 72e53c8 29f7fc8 72e53c8 59842d0 29f7fc8 72e53c8 59842d0 29f7fc8 59842d0 29f7fc8 0439c27 29f7fc8 72e53c8 29f7fc8 59842d0 29f7fc8 72e53c8 29f7fc8 59842d0 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 29f7fc8 3710d9c 29f7fc8 5cc2c95 ece0d95 5cc2c95 ece0d95 5cc2c95 ece0d95 5cc2c95 ece0d95 5cc2c95 ece0d95 5cc2c95 3710d9c 5cc2c95 3710d9c 5cc2c95 29f7fc8 5cc2c95 59842d0 5cc2c95 29f7fc8 0439c27 5cc2c95 0439c27 ece0d95 0439c27 ece0d95 0439c27 ece0d95 0439c27 ece0d95 0439c27 ff55f13 ece0d95 0439c27 ece0d95 0439c27 ece0d95 0439c27 5cc2c95 0439c27 5cc2c95 29f7fc8 5cc2c95 29f7fc8 5cc2c95 e9f2e2b 72e53c8 e9f2e2b 29f7fc8 0439c27 ece0d95 0439c27 59842d0 ece0d95 0439c27 29f7fc8 0439c27 29f7fc8 0439c27 b58e7c8 0439c27 ece0d95 0439c27 59842d0 0439c27 5cc2c95 0439c27 5cc2c95 0439c27 72e53c8 e9f2e2b 90d6bd6 47ce31f e9f2e2b 59842d0 e9f2e2b 72e53c8 29f7fc8 5cc2c95 29f7fc8 72e53c8 59842d0 29f7fc8 5cc2c95 29f7fc8 5cc2c95 0439c27 29f7fc8 5cc2c95 0439c27 5cc2c95 29f7fc8 5cc2c95 29f7fc8 29ec909 59842d0 29f7fc8 5cc2c95 29f7fc8 738c2de 29f7fc8 3710d9c daf6794 29f7fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 |
import os
DEMO_MODE = False
MEMORY_STORAGE_TYPE = "RAM"
HF_DATASET_MEMORY_REPO = "broadfield-dev/ai-brain"
HF_DATASET_RULES_REPO = "broadfield-dev/ai-rules"
os.environ['STORAGE_BACKEND'] = MEMORY_STORAGE_TYPE
if MEMORY_STORAGE_TYPE == "HF_DATASET":
os.environ['HF_MEMORY_DATASET_REPO'] = HF_DATASET_MEMORY_REPO
os.environ['HF_RULES_DATASET_REPO'] = HF_DATASET_RULES_REPO
import json
import re
import logging
from datetime import datetime
from dotenv import load_dotenv
import gradio as gr
import time
import tempfile
import xml.etree.ElementTree as ET
from PIL import Image, ImageDraw
from model_logic import (
get_available_providers, get_model_display_names_for_provider,
get_default_model_display_name_for_provider, call_model_stream, MODELS_BY_PROVIDER
)
from memory_logic import (
initialize_memory_system,
add_memory_entry, retrieve_memories_semantic, get_all_memories_cached, clear_all_memory_data_backend,
add_rule_entry, retrieve_rules_semantic, remove_rule_entry, get_all_rules_cached, clear_all_rules_data_backend,
save_faiss_indices_to_disk, STORAGE_BACKEND as MEMORY_STORAGE_BACKEND, SQLITE_DB_PATH as MEMORY_SQLITE_PATH,
HF_MEMORY_DATASET_REPO as MEMORY_HF_MEM_REPO, HF_RULES_DATASET_REPO as MEMORY_HF_RULES_REPO,
load_rules_from_file, load_memories_from_file, process_rules_from_text_blob, import_kb_from_kv_dict
)
from websearch_logic import scrape_url, search_and_scrape_duckduckgo, search_and_scrape_google
from image_kb_logic import (
set_pil_image_format_to_png,
extract_data_from_image,
decrypt_data,
InvalidTag,
parse_kv_string_to_dict,
convert_kb_to_kv_string,
generate_brain_carrier_image,
draw_key_list_dropdown_overlay,
encrypt_data,
embed_data_in_image,
_get_font,
PREFERRED_FONTS,
)
from prompts import (
DEFAULT_SYSTEM_PROMPT,
METRIC_GENERATION_SYSTEM_PROMPT,
METRIC_GENERATION_USER_PROMPT_TEMPLATE,
PLAN_GENERATION_SYSTEM_PROMPT,
PLAN_GENERATION_USER_PROMPT_TEMPLATE,
INSIGHT_GENERATION_SYSTEM_PROMPT,
INSIGHT_GENERATION_USER_PROMPT_TEMPLATE
)
from gradio_client import Client
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(threadName)s - %(message)s')
logger = logging.getLogger(__name__)
for lib_name in ["urllib3", "requests", "huggingface_hub", "PIL.PngImagePlugin", "matplotlib", "gradio_client.client", "multipart.multipart", "httpx", "sentence_transformers", "faiss", "datasets"]:
if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)
WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true"
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7))
current_chat_session_history = []
LOAD_RULES_FILE = os.getenv("LOAD_RULES_FILE")
LOAD_MEMORIES_FILE = os.getenv("LOAD_MEMORIES_FILE")
logger.info(f"App Config: WebSearch={WEB_SEARCH_ENABLED}, MemoryBackend={MEMORY_STORAGE_BACKEND}")
logger.info(f"Startup loading: Rules from {LOAD_RULES_FILE or 'None'}, Memories from {LOAD_MEMORIES_FILE or 'None'}")
def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
if not retrieved_insights_list:
return "No specific guiding principles or learned insights retrieved.", []
parsed = []
for text in retrieved_insights_list:
match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
if match:
parsed.append({"type": match.group(1).upper().replace(" ", "_"), "score": match.group(2), "text": match.group(3).strip(), "original": text.strip()})
else:
parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
try:
parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
except ValueError: logger.warning("FORMAT_INSIGHTS: Sort error due to invalid score format.")
grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed
def generate_interaction_metrics(user_input: str, bot_response: str, provider: str, model_display_name: str, api_key_override: str = None) -> dict:
metric_start_time = time.time()
logger.info(f"Generating metrics with: {provider}/{model_display_name}")
metric_prompt_content = METRIC_GENERATION_USER_PROMPT_TEMPLATE.format(user_input=user_input, bot_response=bot_response)
metric_messages = [{"role": "system", "content": METRIC_GENERATION_SYSTEM_PROMPT}, {"role": "user", "content": metric_prompt_content}]
try:
metrics_provider_final, metrics_model_display_final = provider, model_display_name
metrics_model_env = os.getenv("METRICS_MODEL")
if metrics_model_env and "/" in metrics_model_env:
m_prov, m_id = metrics_model_env.split('/', 1)
m_disp_name = next((dn for dn, mid in MODELS_BY_PROVIDER.get(m_prov.lower(), {}).get("models", {}).items() if mid == m_id), None)
if m_disp_name: metrics_provider_final, metrics_model_display_final = m_prov, m_disp_name
else: logger.warning(f"METRICS_MODEL '{metrics_model_env}' not found, using interaction model.")
response_chunks = list(call_model_stream(provider=metrics_provider_final, model_display_name=metrics_model_display_final, messages=metric_messages, api_key_override=api_key_override, temperature=0.05, max_tokens=200))
resp_str = "".join(response_chunks).strip()
json_match = re.search(r"```json\s*(\{.*?\})\s*```", resp_str, re.DOTALL | re.IGNORECASE) or re.search(r"(\{.*?\})", resp_str, re.DOTALL)
if json_match: metrics_data = json.loads(json_match.group(1))
else:
logger.warning(f"METRICS_GEN: Non-JSON response from {metrics_provider_final}/{metrics_model_display_final}: '{resp_str}'")
return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": "metrics format error"}
parsed_metrics = {"takeaway": metrics_data.get("takeaway", "N/A"), "response_success_score": float(metrics_data.get("response_success_score", 0.5)), "future_confidence_score": float(metrics_data.get("future_confidence_score", 0.5)), "error": metrics_data.get("error")}
logger.info(f"METRICS_GEN: Generated in {time.time() - metric_start_time:.2f}s. Data: {parsed_metrics}")
return parsed_metrics
except Exception as e:
logger.error(f"METRICS_GEN Error: {e}", exc_info=False)
return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": str(e)}
def _generate_action_plan(
original_query: str, provider_name: str, model_display_name: str, ui_api_key_override: str | None, chat_history: list[dict]
) -> dict:
history_str = "\n".join([f"{msg['role']}: {msg['content'][:150]}" for msg in chat_history[-4:]])
plan_user_prompt = PLAN_GENERATION_USER_PROMPT_TEMPLATE.format(history_str=history_str, original_query=original_query)
plan_messages = [{"role": "system", "content": PLAN_GENERATION_SYSTEM_PROMPT}, {"role": "user", "content": plan_user_prompt}]
try:
response_chunks = list(call_model_stream(
provider=provider_name,
model_display_name=model_display_name,
messages=plan_messages,
api_key_override=ui_api_key_override,
temperature=0.0,
max_tokens=1000
))
resp_str = "".join(response_chunks).strip()
json_match = re.search(r"\{.*\}", resp_str, re.DOTALL)
if json_match:
plan_data = json.loads(json_match.group(0))
return plan_data
except Exception as e:
logger.error(f"PLAN_GEN: Failed to generate or parse action plan: {e}")
return {
"action_type": "multi_step_plan",
"plan": [
{"tool": "web_search", "task": original_query},
{"tool": "respond", "task": "Synthesize all information from the scratchpad and provide a comprehensive final answer to the user."}
]
}
def process_user_interaction_gradio(
user_input: str,
max_research_steps: int,
provider_name: str,
model_display_name: str,
chat_history: list[dict],
custom_system_prompt: str = None,
ui_api_key_override: str = None,
):
process_start_time = time.time()
request_id = os.urandom(4).hex()
logger.info(f"PUI_GRADIO [{request_id}] Start. User: '{user_input[:50]}...' Max Steps: {max_research_steps}")
yield "status", "<i>[Deciding on an action plan...]</i>"
action_plan_data = _generate_action_plan(user_input, provider_name, model_display_name, ui_api_key_override, chat_history)
action_type = action_plan_data.get("action_type")
if action_type == "fast_response":
yield "status", "<i>[Executing fast response...]</i>"
yield "plan", [{"tool": "fast_response", "task": action_plan_data.get("reason", "Direct answer.")}]
now_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
final_sys_prompt = custom_system_prompt or DEFAULT_SYSTEM_PROMPT
final_sys_prompt = f"Current Date/Time: {now_str}.\n\n" + final_sys_prompt
messages_for_llm = [{"role": "system", "content": final_sys_prompt}] + chat_history + [{"role": "user", "content": user_input}]
streamed_response = ""
try:
for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=messages_for_llm, api_key_override=ui_api_key_override, temperature=0.7, max_tokens=3000):
streamed_response += chunk
yield "response_chunk", chunk
except Exception as e:
streamed_response = f"\n\n(Error during fast response: {str(e)[:150]})"
yield "response_chunk", streamed_response
final_bot_text = streamed_response.strip()
yield "final_response", {"response": final_bot_text}
return
plan = action_plan_data.get("plan", [])
if not plan:
plan = [{"tool": "web_search", "task": user_input}, {"tool": "respond", "task": "Synthesize a response."}]
yield "plan", plan
research_scratchpad = ""
now_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
for i, step_action in enumerate(plan):
tool = step_action.get("tool")
task = step_action.get("task")
if tool == 'respond':
break
if i + 1 > max_research_steps:
research_scratchpad += f"\n\n---NOTE: Maximum research step budget of {max_research_steps} reached. Proceeding to final response.---\n"
logger.warning(f"PUI_GRADIO [{request_id}]: Max research steps ({max_research_steps}) reached.")
break
task_for_display = str(task) if isinstance(task, dict) else task
yield "status", f"<i>[Executing Step {i+1}/{len(plan)-1}: {tool} -> {task_for_display[:70]}...]</i>"
step_findings = f"Step {i+1} ({tool}: '{task_for_display[:1000]}'): "
if tool == 'web_search':
try:
web_results = search_and_scrape_duckduckgo(task, num_results=5)
scraped_content = "\n".join([f"Source:\nURL:{r.get('url','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:1500]}\n---" for r in web_results]) if web_results else "No results found."
synthesis_prompt = f"Relevant web content for the task '{task}':\n\n{scraped_content}\n\nConcisely summarize the findings from the content."
summary = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": synthesis_prompt}], api_key_override=ui_api_key_override, temperature=0.1, max_tokens=400)))
step_findings += summary
except Exception as e:
step_findings += f"Error during web search: {e}"
elif tool == 'web_scrape':
try:
web_results = scrape_url(task)
scraped_content = "\n".join([f"Source:\nURL:{r.get('url','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:1500]}\n---" for r in web_results]) if web_results else "No results found."
synthesis_prompt = f"Relevant web content for the task '{task}':\n\n{scraped_content}\n\nConcisely summarize the findings from the content."
summary = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": synthesis_prompt}], api_key_override=ui_api_key_override, temperature=0.1, max_tokens=400)))
step_findings += summary
except Exception as e:
step_findings += f"Error during web scrape: {e}"
elif tool == 'gradio_view_api':
try:
client = Client(task)
api_info = client.view_api(all_endpoints=True)
summary = str(api_info)
if summary and summary.strip():
step_findings += f"Successfully retrieved API endpoints for space '{task}':\n{summary}"
else:
step_findings += f"Could not retrieve valid API endpoint information for space '{task}'."
except Exception as e:
error_message = f"Error viewing Gradio API for space '{task}': {e}"
logger.error(f"GRADIO_VIEW_API_TOOL Error: {e}\nTask was: {task}", exc_info=True)
step_findings += error_message
elif tool == 'gradio_client':
try:
if isinstance(task, str):
try:
params = json.loads(task)
except json.JSONDecodeError:
json_match = re.search(r"\{.*\}", task, re.DOTALL)
if json_match:
params = json.loads(json_match.group(0))
else:
raise ValueError("Task is not a valid JSON string or does not contain a JSON object.")
elif isinstance(task, dict):
params = task
else:
raise TypeError(f"Unsupported task type for gradio_client: {type(task)}")
space_id = params.get("space_id")
api_name = params.get("api_name")
parameters = params.get("parameters", {})
if not space_id or not api_name:
raise ValueError("Missing 'space_id' or 'api_name' in task JSON.")
if not isinstance(parameters, dict):
raise TypeError("The 'parameters' field in the task must be a JSON object (dictionary).")
client = Client(space_id)
result = client.predict(**parameters, api_name=api_name)
if isinstance(result, (str, int, float, bool)):
result_str = str(result)
elif isinstance(result, (dict, list)):
result_str = json.dumps(result, indent=2)
else:
result_str = f"Received result of type {type(result)}."
step_findings += f"Successfully called Gradio API {api_name} on space {space_id}. Result:\n{result_str}"
except Exception as e:
error_message = f"Error during Gradio Client operation: {e}"
logger.error(f"GRADIO_CLIENT_TOOL Error: {e}\nTask was: {task}", exc_info=True)
step_findings += error_message
elif tool == 'memory_search':
try:
retrieved_mems = retrieve_memories_semantic(task, k=3)
if retrieved_mems:
memory_context = "\n".join([f"- User: {m.get('user_input','')} -> AI: {m.get('bot_response','')} (Takeaway: {m.get('metrics',{}).get('takeaway','N/A')})" for m in retrieved_mems])
step_findings += f"Found relevant memories:\n{memory_context}"
else:
step_findings += "No relevant memories found."
except Exception as e:
step_findings += f"Error during memory search: {e}"
elif tool == 'think':
try:
think_prompt = f"Original Query: '{user_input}'\n\nResearch Scratchpad:\n```\n{research_scratchpad}\n```\n\nMy current thinking task is: '{task}'. Based on the scratchpad, what is the conclusion of this thinking step?"
thought = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": think_prompt}], api_key_override=ui_api_key_override, temperature=0.3, max_tokens=500)))
step_findings += f"Conclusion: {thought}"
except Exception as e:
step_findings += f"Error during thinking step: {e}"
else:
step_findings += "Unknown tool specified in plan."
research_scratchpad += f"\n\n---\n{step_findings}\n---"
yield "step_result", {"step": i + 1, "tool": tool, "task": task_for_display, "result": step_findings}
yield "status", "<i>[Synthesizing final report...]</i>"
final_sys_prompt = custom_system_prompt or DEFAULT_SYSTEM_PROMPT
final_sys_prompt += f"\n\nCurrent Date/Time: {now_str}. You have just completed a research plan. Synthesize the information in the 'Research Scratchpad' into a final, comprehensive answer. Cite sources by including URLs if available."
final_user_prompt = f"Original user query: \"{user_input}\"\n\nResearch Scratchpad:\n```\n{research_scratchpad}\n```\n\nNow, provide the final, synthesized answer to the user."
final_messages = [{"role": "system", "content": final_sys_prompt}, {"role": "user", "content": final_user_prompt}]
streamed_response = ""
try:
for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=final_messages, api_key_override=ui_api_key_override, temperature=0.6, max_tokens=3000):
streamed_response += chunk
yield "response_chunk", chunk
except Exception as e:
error_msg = f"\n\n(Error during final synthesis: {str(e)[:150]})"
streamed_response += error_msg
yield "response_chunk", error_msg
final_bot_text = streamed_response.strip() or "(No response or error during synthesis.)"
logger.info(f"PUI_GRADIO [{request_id}]: Finished. Total: {time.time() - process_start_time:.2f}s. Resp len: {len(final_bot_text)}")
yield "final_response", {"response": final_bot_text}
def perform_post_interaction_learning(user_input: str, bot_response: str, provider: str, model_disp_name: str, api_key_override: str = None):
task_id = os.urandom(4).hex()
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: START User='{user_input[:40]}...', Bot='{bot_response[:40]}...'")
learning_start_time = time.time()
significant_learnings_summary = []
try:
metrics = generate_interaction_metrics(user_input, bot_response, provider, model_disp_name, api_key_override)
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Metrics: {metrics}")
add_memory_entry(user_input, metrics, bot_response)
summary = f"User:\"{user_input}\"\nAI:\"{bot_response}\"\nMetrics(takeaway):{metrics.get('takeaway','N/A')},Success:{metrics.get('response_success_score','N/A')}"
existing_rules_ctx = "\n".join([f"- \"{r}\"" for r in retrieve_rules_semantic(f"{summary}\n{user_input}", k=10)]) or "No existing rules context."
insight_user_prompt = INSIGHT_GENERATION_USER_PROMPT_TEMPLATE.format(summary=summary, existing_rules_ctx=existing_rules_ctx)
insight_msgs = [{"role":"system", "content":INSIGHT_GENERATION_SYSTEM_PROMPT}, {"role":"user", "content":insight_user_prompt}]
insight_prov, insight_model_disp = provider, model_disp_name
insight_env_model = os.getenv("INSIGHT_MODEL_OVERRIDE")
if insight_env_model and "/" in insight_env_model:
i_p, i_id = insight_env_model.split('/', 1)
i_d_n = next((dn for dn, mid in MODELS_BY_PROVIDER.get(i_p.lower(), {}).get("models", {}).items() if mid == i_id), None)
if i_d_n: insight_prov, insight_model_disp = i_p, i_d_n
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Generating insights with {insight_prov}/{insight_model_disp} (expecting XML)")
raw_ops_xml_full = "".join(list(call_model_stream(provider=insight_prov, model_display_name=insight_model_disp, messages=insight_msgs, api_key_override=api_key_override, temperature=0.0, max_tokens=3500))).strip()
ops_data_list, processed_count = [], 0
xml_match = re.search(r"```xml\s*(<operations_list>.*</operations_list>)\s*```", raw_ops_xml_full, re.DOTALL | re.IGNORECASE) or \
re.search(r"(<operations_list>.*</operations_list>)", raw_ops_xml_full, re.DOTALL | re.IGNORECASE)
if xml_match:
xml_content_str = xml_match.group(1)
try:
root = ET.fromstring(xml_content_str)
if root.tag == "operations_list":
for op_element in root.findall("operation"):
action_el = op_element.find("action")
insight_el = op_element.find("insight")
old_insight_el = op_element.find("old_insight_to_replace")
action = action_el.text.strip().lower() if action_el is not None and action_el.text else None
insight_text = insight_el.text.strip() if insight_el is not None and insight_el.text else None
old_insight_text = old_insight_el.text.strip() if old_insight_el is not None and old_insight_el.text else None
if action and insight_text:
ops_data_list.append({
"action": action,
"insight": insight_text,
"old_insight_to_replace": old_insight_text
})
else:
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Skipped XML operation due to missing action or insight text. Action: {action}, Insight: {insight_text}")
else:
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML root tag is not <operations_list>. Found: {root.tag}. XML content:\n{xml_content_str}")
except ET.ParseError as e:
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML parsing error: {e}. XML content that failed:\n{xml_content_str}")
except Exception as e_xml_proc:
logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: Error processing parsed XML: {e_xml_proc}. XML content:\n{xml_content_str}")
else:
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No <operations_list> XML structure found in LLM output. Full raw output:\n{raw_ops_xml_full}")
if ops_data_list:
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: LLM provided {len(ops_data_list)} insight ops from XML.")
for op_idx, op_data in enumerate(ops_data_list):
action = op_data["action"]
insight_text = op_data["insight"]
old_insight = op_data["old_insight_to_replace"]
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", insight_text, re.I|re.DOTALL):
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to invalid insight_text format from XML: '{insight_text[:100]}...'")
continue
if action == "add":
success, status_msg = add_rule_entry(insight_text)
if success:
processed_count +=1
if insight_text.upper().startswith("[CORE_RULE"):
significant_learnings_summary.append(f"New Core Rule Added: {insight_text}")
else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (add from XML): Failed to add rule '{insight_text[:50]}...'. Status: {status_msg}")
elif action == "update":
if old_insight and old_insight != insight_text:
remove_success = remove_rule_entry(old_insight)
if not remove_success:
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to remove old rule '{old_insight[:50]}...' before adding new.")
success, status_msg = add_rule_entry(insight_text)
if success:
processed_count +=1
if insight_text.upper().startswith("[CORE_RULE"):
significant_learnings_summary.append(f"Core Rule Updated to: {insight_text}")
else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to add/update rule '{insight_text[:50]}...'. Status: {status_msg}")
else:
logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to unknown action '{action}' from XML.")
if significant_learnings_summary:
learning_digest = "SYSTEM CORE LEARNING DIGEST:\n" + "\n".join(significant_learnings_summary)
system_metrics = {
"takeaway": "Core knowledge refined.",
"response_success_score": 1.0,
"future_confidence_score": 1.0,
"type": "SYSTEM_REFLECTION"
}
add_memory_entry(
user_input="SYSTEM_INTERNAL_REFLECTION_TRIGGER",
metrics=system_metrics,
bot_response=learning_digest
)
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Added CORE_LEARNING_DIGEST to memories: {learning_digest[:100]}...")
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Processed {processed_count} insight ops out of {len(ops_data_list)} received from XML.")
else:
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No valid insight operations derived from LLM's XML output.")
except Exception as e: logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: CRITICAL ERROR in learning task: {e}", exc_info=True)
logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: END. Total: {time.time() - learning_start_time:.2f}s")
def handle_gradio_chat_submit(user_msg_txt: str, max_research_steps: int, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
global current_chat_session_history
cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
updated_rules_text = ui_refresh_rules_display_fn()
updated_mems_json = ui_refresh_memories_display_fn()
log_html_output = gr.HTML("<p><i>Research Log will appear here.</i></p>")
final_report_tb = gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True)
dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
if not user_msg_txt.strip():
status_txt = "Error: Empty message."
updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)
return
updated_gr_hist.append((user_msg_txt, "<i>Thinking... See Research Log below for progress.</i>"))
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)
internal_hist = list(current_chat_session_history)
final_bot_resp_acc = ""
temp_dl_file_path = None
try:
processor_gen = process_user_interaction_gradio(
user_input=user_msg_txt,
max_research_steps=max_research_steps,
provider_name=sel_prov_name,
model_display_name=sel_model_disp_name,
chat_history=internal_hist,
custom_system_prompt=cust_sys_prompt.strip() or None,
ui_api_key_override=ui_api_key.strip() if ui_api_key else None
)
curr_bot_disp_msg = ""
full_plan = []
log_html_parts = []
for upd_type, upd_data in processor_gen:
if upd_type == "status":
status_txt = upd_data
if "Deciding" in status_txt or "Executing" in status_txt:
log_html_output = gr.HTML(f"<p><i>{status_txt}</i></p>")
elif upd_type == "plan":
full_plan = upd_data
log_html_parts = ["<h3>Action Plan</h3><ol>"]
for i, step in enumerate(full_plan):
log_html_parts.append(f'<li id="log-step-{i+1}"><strong>{step.get("tool")}</strong>: {step.get("task")} <span style="color:gray;">(Pending)</span></li>')
log_html_parts.append("</ol><hr><h3>Log</h3>")
log_html_output = gr.HTML("".join(log_html_parts))
elif upd_type == "step_result":
step_num = upd_data["step"]
sanitized_result = upd_data["result"].replace('<', '<').replace('>', '>').replace('\n', '<br>')
log_html_parts[step_num] = f'<li id="log-step-{step_num}"><strong>{upd_data.get("tool")}</strong>: {upd_data.get("task")} <span style="color:green;">(Done)</span></li>'
log_html_parts.append(f'<div style="margin-left: 20px; padding: 5px; border-left: 2px solid #ccc;"><small style="color: #555;">{sanitized_result}</small></div>')
next_step_index_in_list = step_num + 1
if next_step_index_in_list < len(full_plan) + 1:
next_step_action = full_plan[step_num]
if next_step_action.get("tool") != "respond":
log_html_parts[next_step_index_in_list] = f'<li id="log-step-{next_step_index_in_list}"><strong>{next_step_action.get("tool")}</strong>: {next_step_action.get("task")} <span style="color:blue;">(In Progress...)</span></li>'
log_html_output = gr.HTML("".join(log_html_parts))
elif upd_type == "response_chunk":
curr_bot_disp_msg += upd_data
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg)
elif upd_type == "final_response":
final_bot_resp_acc = upd_data["response"]
status_txt = "Response generated. Processing learning..."
if not curr_bot_disp_msg and final_bot_resp_acc: curr_bot_disp_msg = final_bot_resp_acc
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg or "(No text)")
final_report_tb = gr.Textbox(value=curr_bot_disp_msg, interactive=True, show_copy_button=True)
if curr_bot_disp_msg and not curr_bot_disp_msg.startswith("Error:"):
try:
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", encoding='utf-8') as tmpfile:
tmpfile.write(curr_bot_disp_msg)
temp_dl_file_path = tmpfile.name
dl_report_btn = gr.DownloadButton(value=temp_dl_file_path, visible=True, interactive=True)
except Exception as e:
logger.error(f"Error creating temp file for download: {e}", exc_info=False)
dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False, label="Download Error")
else:
dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)
if upd_type == "final_response": break
except Exception as e:
logger.error(f"Chat handler error during main processing: {e}", exc_info=True)
status_txt = f"Error: {str(e)[:100]}"
error_message_for_chat = f"Sorry, an error occurred: {str(e)[:100]}"
if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
updated_gr_hist[-1] = (user_msg_txt, error_message_for_chat)
final_report_tb = gr.Textbox(value=error_message_for_chat, interactive=True)
dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
log_html_output = gr.HTML(f'<p style="color:red;"><strong>Error processing request.</strong></p>')
current_rules_text_on_error = ui_refresh_rules_display_fn()
current_mems_json_on_error = ui_refresh_memories_display_fn()
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, current_rules_text_on_error, current_mems_json_on_error)
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
try: os.unlink(temp_dl_file_path)
except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path} after error: {e_unlink}")
return
if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
current_chat_session_history.extend([{"role": "user", "content": user_msg_txt}, {"role": "assistant", "content": final_bot_resp_acc}])
status_txt = "<i>[Performing post-interaction learning...]</i>"
current_rules_text_before_learn = ui_refresh_rules_display_fn()
current_mems_json_before_learn = ui_refresh_memories_display_fn()
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, current_rules_text_before_learn, current_mems_json_before_learn)
try:
perform_post_interaction_learning(
user_input=user_msg_txt,
bot_response=final_bot_resp_acc,
provider=sel_prov_name,
model_disp_name=sel_model_disp_name,
api_key_override=ui_api_key.strip() if ui_api_key else None
)
status_txt = "Response & Learning Complete."
except Exception as e_learn:
logger.error(f"Error during post-interaction learning: {e_learn}", exc_info=True)
status_txt = "Response complete. Error during learning."
else:
status_txt = "Processing finished; no valid response or error occurred."
updated_rules_text = ui_refresh_rules_display_fn()
updated_mems_json = ui_refresh_memories_display_fn()
yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)
if temp_dl_file_path and os.path.exists(temp_dl_file_path):
try: os.unlink(temp_dl_file_path)
except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path}: {e_unlink}")
def ui_refresh_rules_display_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
def ui_refresh_memories_display_fn(): return get_all_memories_cached() or []
def ui_download_rules_action_fn():
rules_content = "\n\n---\n\n".join(get_all_rules_cached())
if not rules_content.strip():
gr.Warning("No rules to download.")
return gr.DownloadButton(value=None, interactive=False, label="No Rules")
try:
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt", encoding='utf-8') as tmpfile:
tmpfile.write(rules_content)
return tmpfile.name
except Exception as e:
logger.error(f"Error creating rules download file: {e}")
gr.Error(f"Failed to prepare rules for download: {e}")
return gr.DownloadButton(value=None, interactive=False, label="Error")
def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
if not uploaded_file_obj: return "No file provided for rules upload."
try:
with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
except Exception as e_read: return f"Error reading file: {e_read}"
if not content.strip(): return "Uploaded rules file is empty."
added_count, skipped_count, error_count = 0,0,0
potential_rules = []
file_name_lower = uploaded_file_obj.name.lower()
if file_name_lower.endswith(".txt"):
potential_rules = content.split("\n\n---\n\n")
if len(potential_rules) == 1 and "\n" in content:
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
elif file_name_lower.endswith(".jsonl"):
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try:
rule_text_in_json_string = json.loads(line)
if isinstance(rule_text_in_json_string, str):
potential_rules.append(rule_text_in_json_string)
else:
logger.warning(f"Rule Upload (JSONL): Line {line_num+1} did not contain a string value. Got: {type(rule_text_in_json_string)}")
error_count +=1
except json.JSONDecodeError:
logger.warning(f"Rule Upload (JSONL): Line {line_num+1} failed to parse as JSON: {line[:100]}")
error_count +=1
else:
return "Unsupported file type for rules. Please use .txt or .jsonl."
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
total_to_process = len(valid_potential_rules)
if total_to_process == 0 and error_count == 0: return "No valid rules found in file to process."
elif total_to_process == 0 and error_count > 0: return f"No valid rules found to process. Encountered {error_count} parsing/format errors."
progress(0, desc="Starting rules upload...")
for idx, rule_text in enumerate(valid_potential_rules):
success, status_msg = add_rule_entry(rule_text)
if success: added_count += 1
elif status_msg == "duplicate": skipped_count += 1
else: error_count += 1
progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} rules...")
msg = f"Rules Upload: Total valid rule segments processed: {total_to_process}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors (parsing/add): {error_count}."
logger.info(msg); return msg
def ui_download_memories_action_fn():
memories = get_all_memories_cached()
if not memories:
gr.Warning("No memories to download.")
return gr.DownloadButton(value=None, interactive=False, label="No Memories")
jsonl_content = ""
for mem_dict in memories:
try: jsonl_content += json.dumps(mem_dict) + "\n"
except Exception as e: logger.error(f"Error serializing memory for download: {mem_dict}, Error: {e}")
if not jsonl_content.strip():
gr.Warning("No valid memories to serialize for download.")
return gr.DownloadButton(value=None, interactive=False, label="No Data")
try:
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".jsonl", encoding='utf-8') as tmpfile:
tmpfile.write(jsonl_content)
return tmpfile.name
except Exception as e:
logger.error(f"Error creating memories download file: {e}")
gr.Error(f"Failed to prepare memories for download: {e}")
return gr.DownloadButton(value=None, interactive=False, label="Error")
def ui_upload_memories_action_fn(uploaded_file_obj, progress=gr.Progress()):
if not uploaded_file_obj: return "No file provided for memories upload."
try:
with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
except Exception as e_read: return f"Error reading file: {e_read}"
if not content.strip(): return "Uploaded memories file is empty."
added_count, format_error_count, save_error_count = 0,0,0
memory_objects_to_process = []
file_ext = os.path.splitext(uploaded_file_obj.name.lower())[1]
if file_ext == ".json":
try:
parsed_json = json.loads(content)
if isinstance(parsed_json, list): memory_objects_to_process = parsed_json
elif isinstance(parsed_json, dict): memory_objects_to_process = [parsed_json]
else:
logger.warning(f"Memories Upload (.json): File content is not a JSON list or object. Type: {type(parsed_json)}"); format_error_count = 1
except json.JSONDecodeError as e:
logger.warning(f"Memories Upload (.json): Invalid JSON file. Error: {e}"); format_error_count = 1
elif file_ext == ".jsonl":
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try: memory_objects_to_process.append(json.loads(line))
except json.JSONDecodeError:
logger.warning(f"Memories Upload (.jsonl): Line {line_num+1} parse error: {line[:100]}"); format_error_count += 1
else: return "Unsupported file type for memories. Please use .json or .jsonl."
if not memory_objects_to_process and format_error_count > 0 : return f"Memories Upload: File parsing failed. Found {format_error_count} format errors and no processable objects."
elif not memory_objects_to_process: return "No valid memory objects found in the uploaded file."
total_to_process = len(memory_objects_to_process)
if total_to_process == 0: return "No memory objects to process (after parsing)."
progress(0, desc="Starting memories upload...")
for idx, mem_data in enumerate(memory_objects_to_process):
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
if success: added_count += 1
else: save_error_count += 1
else:
logger.warning(f"Memories Upload: Skipped invalid memory object structure: {str(mem_data)[:100]}"); format_error_count += 1
progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} memories...")
msg = f"Memories Upload: Processed {total_to_process} objects. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}."
logger.info(msg); return msg
def save_edited_rules_action_fn(edited_rules_text: str, progress=gr.Progress()):
if DEMO_MODE:
gr.Warning("Saving edited rules is disabled in Demo Mode.")
return "Saving edited rules is disabled in Demo Mode."
if not edited_rules_text.strip():
return "No rules text to save."
stats = process_rules_from_text_blob(edited_rules_text, progress)
return f"Editor Save: Added: {stats['added']}, Skipped (duplicates): {stats['skipped']}, Errors/Invalid: {stats['errors']} from {stats['total']} unique rules in text."
def ui_upload_kb_from_image_fn(uploaded_image_filepath: str, password: str, progress=gr.Progress()):
if DEMO_MODE:
gr.Warning("Uploading is disabled in Demo Mode.")
return "Upload disabled in Demo Mode."
if not uploaded_image_filepath:
return "No image file provided or pasted."
progress(0, desc="Loading and standardizing image...")
try:
img_temp = Image.open(uploaded_image_filepath)
img = set_pil_image_format_to_png(img_temp)
except Exception as e:
logger.error(f"KB ImgUL: Open/Standardize fail: {e}")
return f"Error: Could not open or process image file: {e}"
progress(0.2, desc="Extracting data from image...")
try:
extracted_bytes = extract_data_from_image(img)
if not extracted_bytes: return "No data found embedded in the image."
except ValueError as e:
logger.error(f"KB ImgUL: Extract fail: {e}")
return f"Error extracting data: {e}"
except Exception as e:
logger.error(f"KB ImgUL: Extract error: {e}", exc_info=True)
return f"Unexpected extraction error: {e}"
kv_string = ""
try:
if extracted_bytes[:20].decode('utf-8', errors='ignore').strip().startswith("# iLearn"):
kv_string = extracted_bytes.decode('utf-8')
progress(0.4, desc="Parsing data...")
elif password and password.strip():
progress(0.3, desc="Attempting decryption...")
kv_string = decrypt_data(extracted_bytes, password.strip()).decode('utf-8')
progress(0.4, desc="Parsing decrypted data...")
else: return "Data appears encrypted, but no password was provided."
except (UnicodeDecodeError, InvalidTag, ValueError) as e:
if "decryption" in str(e).lower() or isinstance(e, InvalidTag):
return f"Decryption Failed. Check password or file integrity. Details: {e}"
return "Data is binary and requires a password for decryption."
except Exception as e:
logger.error(f"KB ImgUL: Decrypt/Parse error: {e}", exc_info=True)
return f"Unexpected error during decryption or parsing: {e}"
if not kv_string: return "Could not get data from image (after potential decryption)."
try:
kv_dict = parse_kv_string_to_dict(kv_string)
except Exception as e:
logger.error(f"KB ImgUL: Parse fail: {e}")
return f"Error parsing data: {e}"
if not kv_dict: return "Parsed data is empty."
stats = import_kb_from_kv_dict(kv_dict, progress)
msg = f"Upload Complete. Rules - Add: {stats['rules_added']}, Skip: {stats['rules_skipped']}, Err: {stats['rules_errors']}. Mems - Add: {stats['mems_added']}, Err: {stats['mems_errors']}."
logger.info(f"Image KB Upload: {msg}")
return msg
def app_load_fn():
logger.info("App loading. Initializing systems...")
initialize_memory_system()
logger.info("Memory system initialized.")
rules_added, rules_skipped, rules_errors = load_rules_from_file(LOAD_RULES_FILE)
rules_load_msg = f"Rules: Added {rules_added}, Skipped {rules_skipped}, Errors {rules_errors} from {LOAD_RULES_FILE or 'None'}."
logger.info(rules_load_msg)
mems_added, mems_format_errors, mems_save_errors = load_memories_from_file(LOAD_MEMORIES_FILE)
mems_load_msg = f"Memories: Added {mems_added}, Format Errors {mems_format_errors}, Save Errors {mems_save_errors} from {LOAD_MEMORIES_FILE or 'None'}."
logger.info(mems_load_msg)
final_status = f"AI Systems Initialized. {rules_load_msg} {mems_load_msg} Ready."
rules_on_load, mems_on_load = ui_refresh_rules_display_fn(), ui_refresh_memories_display_fn()
return (final_status, rules_on_load, mems_on_load, gr.HTML("<p><i>Research Log will appear here.</i></p>"),
gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True),
gr.DownloadButton(interactive=False, value=None, visible=False))
placeholder_filename = "placeholder_image.png"
try:
if not os.path.exists(placeholder_filename):
img = Image.new('RGB', (200, 100), color='darkblue')
draw = Image.Draw(img)
try:
font = _get_font(PREFERRED_FONTS, 14)
draw.text((10, 45), "Placeholder KB Image", font=font, fill='white')
except Exception:
draw.text((10, 45), "Placeholder", fill='white')
img.save(placeholder_filename)
logger.info(f"Created '{placeholder_filename}' for Gradio examples.")
except Exception as e:
logger.error(f"Could not create placeholder image. The examples may not load correctly. Error: {e}")
def ui_create_kb_image_fn(password: str, content_to_include: list, progress=gr.Progress()):
include_rules = "Include Rules" in content_to_include
include_memories = "Include Memories" in content_to_include
if not include_rules and not include_memories:
gr.Warning("Nothing selected to save.")
return gr.update(value=None, visible=False), gr.update(value=None, visible=False), "Nothing selected to save."
progress(0.1, desc="Fetching knowledge base...")
rules = get_all_rules_cached() if include_rules else []
memories = get_all_memories_cached() if include_memories else []
if not rules and not memories:
gr.Warning("Knowledge base is empty or selected content is empty.")
return gr.update(value=None, visible=False), gr.update(value=None, visible=False), "No content to save."
progress(0.2, desc="Serializing data...")
kv_string = convert_kb_to_kv_string(rules, memories, include_rules, include_memories)
data_bytes = kv_string.encode('utf-8')
if password and password.strip():
progress(0.3, desc="Encrypting data...")
try:
data_bytes = encrypt_data(data_bytes, password.strip())
except Exception as e:
logger.error(f"KB ImgDL: Encrypt failed: {e}")
return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"
progress(0.5, desc="Generating carrier image...")
carrier_image = generate_brain_carrier_image(w=800, h=800)
progress(0.6, desc="Adding visual overlay...")
keys_for_overlay = []
if include_rules: keys_for_overlay.append(f"Rule Count: {len(rules)}")
if include_memories: keys_for_overlay.append(f"Memory Count: {len(memories)}")
title_overlay = "Encrypted Knowledge Base" if password and password.strip() else "iLearn Knowledge Base"
image_with_overlay = draw_key_list_dropdown_overlay(carrier_image, keys=keys_for_overlay, title=title_overlay)
try:
progress(0.8, desc="Embedding data into final image...")
final_image_with_data = embed_data_in_image(image_with_overlay, data_bytes)
except ValueError as e:
logger.error(f"KB ImgDL: Embed failed: {e}")
return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"
progress(0.9, desc="Preparing final image and download file...")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
final_image_with_data.save(tmpfile, format="PNG")
tmp_path = tmpfile.name
progress(1.0, desc="Image created!")
return gr.update(value=tmp_path, visible=True), gr.update(value=tmp_path, visible=True), "Success! Image created."
except Exception as e:
logger.error(f"KB ImgDL: Save failed: {e}")
return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"
def ui_load_from_sources_fn(image_filepath: str, rules_file_obj: object, mems_file_obj: object, password: str, progress=gr.Progress()):
if image_filepath:
progress(0.1, desc="Image source detected. Starting image processing...")
return ui_upload_kb_from_image_fn(image_filepath, password, progress)
if rules_file_obj:
progress(0.1, desc="Rules file detected. Starting rules import...")
return ui_upload_rules_action_fn(rules_file_obj, progress)
if mems_file_obj:
progress(0.1, desc="Memories file detected. Starting memories import...")
return ui_upload_memories_action_fn(mems_file_obj, progress)
return "No file or image uploaded. Please provide a source file to load."
with gr.Blocks(theme=gr.themes.Soft(), css=".gr-button { margin: 5px; } .gr-textbox, .gr-text-area, .gr-dropdown, .gr-json { border-radius: 8px; } .gr-group { border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; } .gr-row { gap: 10px; } .gr-tab { border-radius: 8px; } .status-text { font-size: 0.9em; color: #555; } .gr-json { max-height: 400px; overflow-y: auto; }") as demo:
gr.Markdown(f"# π€ iLearn: An Autonomous Learning Agent {'(DEMO MODE)' if DEMO_MODE else ''}", elem_classes=["header"])
is_sqlite, is_hf_dataset = (MEMORY_STORAGE_BACKEND == "SQLITE"), (MEMORY_STORAGE_BACKEND == "HF_DATASET")
with gr.Row(variant="compact"):
agent_stat_tb = gr.Textbox(label="Agent Status", value="Initializing systems...", interactive=False, elem_classes=["status-text"], scale=4)
with gr.Column(scale=1, min_width=150):
memory_backend_info_tb = gr.Textbox(label="Memory Backend", value=MEMORY_STORAGE_BACKEND, interactive=False, elem_classes=["status-text"])
sqlite_path_display = gr.Textbox(label="SQLite Path", value=MEMORY_SQLITE_PATH, interactive=False, visible=is_sqlite, elem_classes=["status-text"])
hf_repos_display = gr.Textbox(label="HF Repos", value=f"M: {MEMORY_HF_MEM_REPO}, R: {MEMORY_HF_RULES_REPO}", interactive=False, visible=is_hf_dataset, elem_classes=["status-text"])
with gr.Sidebar():
gr.Markdown("## βοΈ Configuration")
with gr.Group():
gr.Markdown("### AI Model Settings")
api_key_tb = gr.Textbox(label="AI Provider API Key (Override)", type="password", placeholder="Uses .env if blank")
available_providers = get_available_providers(); default_provider = available_providers[0] if "groq" not in available_providers else "groq"
prov_sel_dd = gr.Dropdown(label="AI Provider", choices=available_providers, value=default_provider, interactive=True)
default_model_display = get_default_model_display_name_for_provider(default_provider) if default_provider else None
model_sel_dd = gr.Dropdown(label="AI Model", choices=get_model_display_names_for_provider(default_provider) if default_provider else [], value=default_model_display, interactive=True)
research_steps_slider = gr.Slider(label="Max Research Steps", minimum=1, maximum=10, step=1, value=3, interactive=True)
with gr.Group():
gr.Markdown("### System Prompt"); sys_prompt_tb = gr.Textbox(label="System Prompt Base", lines=8, value=DEFAULT_SYSTEM_PROMPT, interactive=True)
with gr.Tabs():
with gr.TabItem("π¬ Chat & Research"):
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("### AI Chat Interface")
main_chat_disp = gr.Chatbot(label=None, height=450, bubble_full_width=False,avatar_images=(None, "https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png"), show_copy_button=True, render_markdown=True, sanitize_html=True)
with gr.Row(variant="compact"):
user_msg_tb = gr.Textbox(show_label=False, placeholder="Ask your research question...", scale=7, lines=1, max_lines=3)
send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
with gr.Accordion("π Detailed Response & Research Log", open=True):
research_log_html = gr.HTML(label="Research Log", value="<div class='log-container'><p><i>Waiting for a new task to begin...</i></p></div>")
fmt_report_tb = gr.Textbox(label="Full AI Response", lines=8, interactive=True, show_copy_button=True)
dl_report_btn = gr.DownloadButton("Download Report", value=None, interactive=False, visible=False)
with gr.TabItem("π§ Knowledge Base"):
with gr.Tabs():
with gr.TabItem("ποΈ System"):
gr.Markdown("View and directly manage the current rules and memories in the system.")
with gr.Row(equal_height=False, variant='compact'):
with gr.Column():
gr.Markdown("### π Current Rules")
rules_disp_ta = gr.TextArea(label=None, lines=15, placeholder="Rules will appear here.", interactive=True)
save_edited_rules_btn = gr.Button("πΎ Save Edited Rules", variant="primary", interactive=not DEMO_MODE)
clear_rules_btn = gr.Button("ποΈ Clear All Rules", variant="stop", visible=not DEMO_MODE)
with gr.Column():
gr.Markdown("### π Current Memories")
mems_disp_json = gr.JSON(label=None, value=[], scale=1)
clear_mems_btn = gr.Button("ποΈ Clear All Memories", variant="stop", visible=not DEMO_MODE)
with gr.TabItem("πΎ Save KB"):
gr.Markdown("Export the current knowledge base as text files or as a single, portable PNG image.")
with gr.Row():
rules_stat_tb = gr.Textbox(label="Rules Status", interactive=False, lines=1, elem_classes=["status-text"])
mems_stat_tb = gr.Textbox(label="Memories Status", interactive=False, lines=1, elem_classes=["status-text"])
with gr.Row():
with gr.Column():
gr.Markdown("### Text File Export")
dl_rules_btn = gr.DownloadButton("β¬οΈ Download Rules (.txt)", value=None)
dl_mems_btn = gr.DownloadButton("β¬οΈ Download Memories (.jsonl)", value=None)
gr.Row()
if MEMORY_STORAGE_BACKEND == "RAM": save_faiss_sidebar_btn = gr.Button("Save FAISS Indices", variant="secondary")
with gr.Column():
gr.Markdown("### Image Export")
with gr.Group():
save_kb_password_tb = gr.Textbox(label="Password (optional for encryption)", type="password")
save_kb_include_cbg = gr.CheckboxGroup(label="Content to Include", choices=["Include Rules", "Include Memories"], value=["Include Rules", "Include Memories"])
create_kb_img_btn = gr.Button("β¨ Create KB Image", variant="secondary")
kb_image_display_output = gr.Image(label="Generated Image (Right-click to copy)", type="filepath", visible=False)
kb_image_download_output = gr.DownloadButton("β¬οΈ Download Image File", visible=False)
with gr.TabItem("π Load KB"):
gr.Markdown("Import rules, memories, or a full KB from local files or a portable PNG image.")
load_status_tb = gr.Textbox(label="Load Operation Status", interactive=False, lines=2)
load_kb_password_tb = gr.Textbox(label="Password (for decrypting images)", type="password")
with gr.Group():
gr.Markdown("#### Sources (Priority: Image > Rules File > Memories File)")
with gr.Row():
upload_kb_img_fobj = gr.Image(label="1. Image Source", type="filepath", sources=["upload", "clipboard"], interactive=not DEMO_MODE)
upload_rules_fobj = gr.File(label="2. Rules File Source (.txt/.jsonl)", file_types=[".txt", ".jsonl"], interactive=not DEMO_MODE)
upload_mems_fobj = gr.File(label="3. Memories File Source (.json/.jsonl)", file_types=[".jsonl", ".json"], interactive=not DEMO_MODE)
load_master_btn = gr.Button("β¬οΈ Load from Sources", variant="primary", interactive=not DEMO_MODE)
gr.Examples(
examples=[
["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.01.png", ""],
["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.011.png", ""],
["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.012.png", ""],
],
inputs=[upload_kb_img_fobj, load_kb_password_tb],
label="Click an Example to Load Data"
)
def dyn_upd_model_dd(sel_prov_dyn: str):
models_dyn = get_model_display_names_for_provider(sel_prov_dyn); def_model_dyn = get_default_model_display_name_for_provider(sel_prov_dyn)
return gr.Dropdown(choices=models_dyn, value=def_model_dyn, interactive=True)
prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)
chat_ins = [user_msg_tb, research_steps_slider, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, research_log_html, fmt_report_tb, dl_report_btn, rules_disp_ta, mems_disp_json]
chat_event_args = {"fn": handle_gradio_chat_submit, "inputs": chat_ins, "outputs": chat_outs}
send_btn.click(**chat_event_args); user_msg_tb.submit(**chat_event_args)
save_edited_rules_btn.click(fn=save_edited_rules_action_fn, inputs=[rules_disp_ta], outputs=[rules_stat_tb], show_progress="full").then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)
clear_rules_btn.click(fn=lambda: ("All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules."), outputs=rules_stat_tb, show_progress=False).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)
clear_mems_btn.click(fn=lambda: ("All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories."), outputs=mems_stat_tb, show_progress=False).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False)
dl_rules_btn.click(fn=ui_download_rules_action_fn, inputs=None, outputs=dl_rules_btn, show_progress=False)
dl_mems_btn.click(fn=ui_download_memories_action_fn, inputs=None, outputs=dl_mems_btn, show_progress=False)
create_kb_img_btn.click(
fn=ui_create_kb_image_fn,
inputs=[save_kb_password_tb, save_kb_include_cbg],
outputs=[kb_image_display_output, kb_image_download_output, load_status_tb],
show_progress="full"
)
load_master_btn.click(
fn=ui_load_from_sources_fn,
inputs=[upload_kb_img_fobj, upload_rules_fobj, upload_mems_fobj, load_kb_password_tb],
outputs=[load_status_tb],
show_progress="full"
).then(
fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta
).then(
fn=ui_refresh_memories_display_fn, outputs=mems_disp_json
)
if MEMORY_STORAGE_BACKEND == "RAM" and 'save_faiss_sidebar_btn' in locals():
def save_faiss_action_with_feedback_sidebar_fn():
try: save_faiss_indices_to_disk(); gr.Info("Attempted to save FAISS indices to disk.")
except Exception as e: logger.error(f"Error saving FAISS indices: {e}", exc_info=True); gr.Error(f"Error saving FAISS indices: {e}")
save_faiss_sidebar_btn.click(fn=save_faiss_action_with_feedback_sidebar_fn, inputs=None, outputs=None, show_progress=False)
app_load_outputs = [agent_stat_tb, rules_disp_ta, mems_disp_json, research_log_html, fmt_report_tb, dl_report_btn]
demo.load(fn=app_load_fn, inputs=None, outputs=app_load_outputs, show_progress="full")
if __name__ == "__main__":
logger.info(f"Starting Gradio AI Research Mega Agent (v9.1 - Correct 1-Click JS Download, Memory: {MEMORY_STORAGE_BACKEND})...")
app_port = int(os.getenv("GRADIO_PORT", 7860))
app_server = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
app_debug = os.getenv("GRADIO_DEBUG", "False").lower() == "false"
app_share = os.getenv("GRADIO_SHARE", "False").lower() == "true"
logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
demo.queue().launch(server_name=app_server, server_port=app_port, debug=app_debug, share=app_share, mcp_server=True, max_threads=40)
logger.info("Gradio application shut down.") |