File size: 64,811 Bytes
29f7fc8
 
72e53c8
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710d9c
29f7fc8
 
 
 
 
72e53c8
29f7fc8
 
 
 
 
3710d9c
 
29f7fc8
 
3710d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f7fc8
3710d9c
29f7fc8
 
 
 
 
 
 
 
 
 
 
72e53c8
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710d9c
 
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
 
 
 
3710d9c
 
29f7fc8
72e53c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f7fc8
 
72e53c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710d9c
 
 
 
72e53c8
 
29f7fc8
3710d9c
72e53c8
 
 
 
 
 
3710d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
3710d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3710d9c
72e53c8
 
 
 
 
 
 
 
 
29f7fc8
72e53c8
 
 
 
 
 
 
 
 
29f7fc8
72e53c8
29f7fc8
3710d9c
72e53c8
29f7fc8
 
 
72e53c8
29f7fc8
 
 
 
 
 
 
 
 
3710d9c
 
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
 
 
 
29f7fc8
 
 
 
 
72e53c8
29f7fc8
 
 
 
 
 
 
 
0439c27
29f7fc8
 
 
 
0439c27
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
29f7fc8
 
0439c27
 
59842d0
72e53c8
 
 
29f7fc8
 
 
59842d0
29f7fc8
 
59842d0
 
29f7fc8
72e53c8
29f7fc8
72e53c8
29f7fc8
72e53c8
29f7fc8
72e53c8
 
 
 
 
 
 
 
 
 
29f7fc8
72e53c8
59842d0
72e53c8
29f7fc8
 
 
59842d0
 
 
72e53c8
 
59842d0
 
 
 
 
 
72e53c8
 
59842d0
 
 
72e53c8
59842d0
 
 
 
 
 
 
 
29f7fc8
 
 
0439c27
59842d0
72e53c8
 
29f7fc8
72e53c8
 
29f7fc8
 
72e53c8
29f7fc8
 
 
 
 
 
72e53c8
29f7fc8
 
72e53c8
29f7fc8
72e53c8
29f7fc8
59842d0
29f7fc8
72e53c8
29f7fc8
 
72e53c8
 
59842d0
29f7fc8
 
72e53c8
 
59842d0
29f7fc8
 
59842d0
29f7fc8
 
 
0439c27
29f7fc8
 
 
72e53c8
29f7fc8
 
 
59842d0
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
72e53c8
29f7fc8
 
 
 
59842d0
29f7fc8
 
 
 
 
 
5cc2c95
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc2c95
 
29f7fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc2c95
 
29f7fc8
5cc2c95
29f7fc8
5cc2c95
29f7fc8
 
 
 
5cc2c95
29f7fc8
5cc2c95
 
 
 
29f7fc8
 
 
 
 
 
 
 
 
5cc2c95
29f7fc8
 
 
 
 
 
 
 
3710d9c
 
 
 
 
29f7fc8
5cc2c95
 
 
 
 
 
 
 
ece0d95
5cc2c95
ece0d95
 
5cc2c95
ece0d95
 
5cc2c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece0d95
 
5cc2c95
 
ece0d95
 
5cc2c95
 
 
 
 
 
 
 
 
3710d9c
5cc2c95
3710d9c
5cc2c95
 
 
29f7fc8
 
 
 
 
 
 
 
 
 
 
5cc2c95
59842d0
5cc2c95
 
29f7fc8
 
0439c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc2c95
0439c27
 
 
 
ece0d95
0439c27
 
 
 
 
 
 
 
 
 
 
 
ece0d95
0439c27
 
 
 
 
 
ece0d95
0439c27
 
ece0d95
0439c27
 
 
 
ff55f13
ece0d95
 
 
 
 
 
 
 
0439c27
 
 
 
ece0d95
0439c27
 
 
 
 
 
 
ece0d95
 
0439c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc2c95
0439c27
 
5cc2c95
 
29f7fc8
5cc2c95
29f7fc8
5cc2c95
 
 
e9f2e2b
 
 
 
 
 
 
 
 
72e53c8
e9f2e2b
 
29f7fc8
0439c27
 
 
 
 
ece0d95
0439c27
 
 
59842d0
ece0d95
0439c27
 
 
 
 
 
 
 
29f7fc8
0439c27
 
 
 
29f7fc8
0439c27
 
 
 
 
 
b58e7c8
 
 
0439c27
 
 
 
 
 
 
 
 
 
 
 
 
ece0d95
0439c27
 
59842d0
0439c27
 
 
5cc2c95
0439c27
5cc2c95
0439c27
 
 
 
72e53c8
e9f2e2b
90d6bd6
47ce31f
 
e9f2e2b
 
59842d0
e9f2e2b
72e53c8
29f7fc8
5cc2c95
29f7fc8
 
 
72e53c8
59842d0
29f7fc8
5cc2c95
29f7fc8
5cc2c95
 
 
 
0439c27
 
 
 
 
 
29f7fc8
5cc2c95
0439c27
 
 
 
 
5cc2c95
 
 
 
 
 
29f7fc8
 
 
5cc2c95
 
29f7fc8
29ec909
59842d0
29f7fc8
 
 
5cc2c95
29f7fc8
 
738c2de
29f7fc8
3710d9c
daf6794
29f7fc8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
import os
DEMO_MODE = False
MEMORY_STORAGE_TYPE = "RAM"

HF_DATASET_MEMORY_REPO = "broadfield-dev/ai-brain"
HF_DATASET_RULES_REPO = "broadfield-dev/ai-rules"

os.environ['STORAGE_BACKEND'] = MEMORY_STORAGE_TYPE
if MEMORY_STORAGE_TYPE == "HF_DATASET":
    os.environ['HF_MEMORY_DATASET_REPO'] = HF_DATASET_MEMORY_REPO
    os.environ['HF_RULES_DATASET_REPO'] = HF_DATASET_RULES_REPO


import json
import re
import logging
from datetime import datetime
from dotenv import load_dotenv
import gradio as gr
import time
import tempfile
import xml.etree.ElementTree as ET
from PIL import Image, ImageDraw

from model_logic import (
    get_available_providers, get_model_display_names_for_provider,
    get_default_model_display_name_for_provider, call_model_stream, MODELS_BY_PROVIDER
)

from memory_logic import (
    initialize_memory_system,
    add_memory_entry, retrieve_memories_semantic, get_all_memories_cached, clear_all_memory_data_backend,
    add_rule_entry, retrieve_rules_semantic, remove_rule_entry, get_all_rules_cached, clear_all_rules_data_backend,
    save_faiss_indices_to_disk, STORAGE_BACKEND as MEMORY_STORAGE_BACKEND, SQLITE_DB_PATH as MEMORY_SQLITE_PATH,
    HF_MEMORY_DATASET_REPO as MEMORY_HF_MEM_REPO, HF_RULES_DATASET_REPO as MEMORY_HF_RULES_REPO,
    load_rules_from_file, load_memories_from_file, process_rules_from_text_blob, import_kb_from_kv_dict
)
from websearch_logic import scrape_url, search_and_scrape_duckduckgo, search_and_scrape_google
from image_kb_logic import (
    set_pil_image_format_to_png,
    extract_data_from_image,
    decrypt_data,
    InvalidTag,
    parse_kv_string_to_dict,
    convert_kb_to_kv_string,
    generate_brain_carrier_image,
    draw_key_list_dropdown_overlay,
    encrypt_data,
    embed_data_in_image,
    _get_font,
    PREFERRED_FONTS,
)
from prompts import (
    DEFAULT_SYSTEM_PROMPT,
    METRIC_GENERATION_SYSTEM_PROMPT,
    METRIC_GENERATION_USER_PROMPT_TEMPLATE,
    PLAN_GENERATION_SYSTEM_PROMPT,
    PLAN_GENERATION_USER_PROMPT_TEMPLATE,
    INSIGHT_GENERATION_SYSTEM_PROMPT,
    INSIGHT_GENERATION_USER_PROMPT_TEMPLATE
)
from gradio_client import Client

load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(threadName)s - %(message)s')
logger = logging.getLogger(__name__)
for lib_name in ["urllib3", "requests", "huggingface_hub", "PIL.PngImagePlugin", "matplotlib", "gradio_client.client", "multipart.multipart", "httpx", "sentence_transformers", "faiss", "datasets"]:
    if logging.getLogger(lib_name): logging.getLogger(lib_name).setLevel(logging.WARNING)

WEB_SEARCH_ENABLED = os.getenv("WEB_SEARCH_ENABLED", "true").lower() == "true"
MAX_HISTORY_TURNS = int(os.getenv("MAX_HISTORY_TURNS", 7))
current_chat_session_history = []

LOAD_RULES_FILE = os.getenv("LOAD_RULES_FILE")
LOAD_MEMORIES_FILE = os.getenv("LOAD_MEMORIES_FILE")
logger.info(f"App Config: WebSearch={WEB_SEARCH_ENABLED}, MemoryBackend={MEMORY_STORAGE_BACKEND}")
logger.info(f"Startup loading: Rules from {LOAD_RULES_FILE or 'None'}, Memories from {LOAD_MEMORIES_FILE or 'None'}")

def format_insights_for_prompt(retrieved_insights_list: list[str]) -> tuple[str, list[dict]]:
    if not retrieved_insights_list:
        return "No specific guiding principles or learned insights retrieved.", []
    parsed = []
    for text in retrieved_insights_list:
        match = re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", text.strip(), re.DOTALL | re.IGNORECASE)
        if match:
            parsed.append({"type": match.group(1).upper().replace(" ", "_"), "score": match.group(2), "text": match.group(3).strip(), "original": text.strip()})
        else:
            parsed.append({"type": "GENERAL_LEARNING", "score": "0.5", "text": text.strip(), "original": text.strip()})
    try:
        parsed.sort(key=lambda x: float(x["score"]) if x["score"].replace('.', '', 1).isdigit() else -1.0, reverse=True)
    except ValueError: logger.warning("FORMAT_INSIGHTS: Sort error due to invalid score format.")
    grouped = {"CORE_RULE": [], "RESPONSE_PRINCIPLE": [], "BEHAVIORAL_ADJUSTMENT": [], "GENERAL_LEARNING": []}
    for p_item in parsed: grouped.get(p_item["type"], grouped["GENERAL_LEARNING"]).append(f"- (Score: {p_item['score']}) {p_item['text']}")
    sections = [f"{k.replace('_', ' ').title()}:\n" + "\n".join(v) for k, v in grouped.items() if v]
    return "\n\n".join(sections) if sections else "No guiding principles retrieved.", parsed

def generate_interaction_metrics(user_input: str, bot_response: str, provider: str, model_display_name: str, api_key_override: str = None) -> dict:
    metric_start_time = time.time()
    logger.info(f"Generating metrics with: {provider}/{model_display_name}")
    metric_prompt_content = METRIC_GENERATION_USER_PROMPT_TEMPLATE.format(user_input=user_input, bot_response=bot_response)
    metric_messages = [{"role": "system", "content": METRIC_GENERATION_SYSTEM_PROMPT}, {"role": "user", "content": metric_prompt_content}]
    try:
        metrics_provider_final, metrics_model_display_final = provider, model_display_name
        metrics_model_env = os.getenv("METRICS_MODEL")
        if metrics_model_env and "/" in metrics_model_env:
            m_prov, m_id = metrics_model_env.split('/', 1)
            m_disp_name = next((dn for dn, mid in MODELS_BY_PROVIDER.get(m_prov.lower(), {}).get("models", {}).items() if mid == m_id), None)
            if m_disp_name: metrics_provider_final, metrics_model_display_final = m_prov, m_disp_name
            else: logger.warning(f"METRICS_MODEL '{metrics_model_env}' not found, using interaction model.")
        response_chunks = list(call_model_stream(provider=metrics_provider_final, model_display_name=metrics_model_display_final, messages=metric_messages, api_key_override=api_key_override, temperature=0.05, max_tokens=200))
        resp_str = "".join(response_chunks).strip()
        json_match = re.search(r"```json\s*(\{.*?\})\s*```", resp_str, re.DOTALL | re.IGNORECASE) or re.search(r"(\{.*?\})", resp_str, re.DOTALL)
        if json_match: metrics_data = json.loads(json_match.group(1))
        else:
            logger.warning(f"METRICS_GEN: Non-JSON response from {metrics_provider_final}/{metrics_model_display_final}: '{resp_str}'")
            return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": "metrics format error"}
        parsed_metrics = {"takeaway": metrics_data.get("takeaway", "N/A"), "response_success_score": float(metrics_data.get("response_success_score", 0.5)), "future_confidence_score": float(metrics_data.get("future_confidence_score", 0.5)), "error": metrics_data.get("error")}
        logger.info(f"METRICS_GEN: Generated in {time.time() - metric_start_time:.2f}s. Data: {parsed_metrics}")
        return parsed_metrics
    except Exception as e:
        logger.error(f"METRICS_GEN Error: {e}", exc_info=False)
        return {"takeaway": "N/A", "response_success_score": 0.5, "future_confidence_score": 0.5, "error": str(e)}

def _generate_action_plan(
    original_query: str, provider_name: str, model_display_name: str, ui_api_key_override: str | None, chat_history: list[dict]
) -> dict:
    history_str = "\n".join([f"{msg['role']}: {msg['content'][:150]}" for msg in chat_history[-4:]])
    plan_user_prompt = PLAN_GENERATION_USER_PROMPT_TEMPLATE.format(history_str=history_str, original_query=original_query)
    plan_messages = [{"role": "system", "content": PLAN_GENERATION_SYSTEM_PROMPT}, {"role": "user", "content": plan_user_prompt}]

    try:
        response_chunks = list(call_model_stream(
            provider=provider_name,
            model_display_name=model_display_name,
            messages=plan_messages,
            api_key_override=ui_api_key_override,
            temperature=0.0,
            max_tokens=1000
        ))
        resp_str = "".join(response_chunks).strip()
        json_match = re.search(r"\{.*\}", resp_str, re.DOTALL)
        if json_match:
            plan_data = json.loads(json_match.group(0))
            return plan_data
    except Exception as e:
        logger.error(f"PLAN_GEN: Failed to generate or parse action plan: {e}")
    
    return {
        "action_type": "multi_step_plan",
        "plan": [
            {"tool": "web_search", "task": original_query},
            {"tool": "respond", "task": "Synthesize all information from the scratchpad and provide a comprehensive final answer to the user."}
        ]
    }

def process_user_interaction_gradio(
    user_input: str,
    max_research_steps: int,
    provider_name: str,
    model_display_name: str,
    chat_history: list[dict],
    custom_system_prompt: str = None,
    ui_api_key_override: str = None,
):
    process_start_time = time.time()
    request_id = os.urandom(4).hex()
    logger.info(f"PUI_GRADIO [{request_id}] Start. User: '{user_input[:50]}...' Max Steps: {max_research_steps}")

    yield "status", "<i>[Deciding on an action plan...]</i>"
    action_plan_data = _generate_action_plan(user_input, provider_name, model_display_name, ui_api_key_override, chat_history)

    action_type = action_plan_data.get("action_type")
    
    if action_type == "fast_response":
        yield "status", "<i>[Executing fast response...]</i>"
        yield "plan", [{"tool": "fast_response", "task": action_plan_data.get("reason", "Direct answer.")}]

        now_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        final_sys_prompt = custom_system_prompt or DEFAULT_SYSTEM_PROMPT
        final_sys_prompt = f"Current Date/Time: {now_str}.\n\n" + final_sys_prompt
        
        messages_for_llm = [{"role": "system", "content": final_sys_prompt}] + chat_history + [{"role": "user", "content": user_input}]
        
        streamed_response = ""
        try:
            for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=messages_for_llm, api_key_override=ui_api_key_override, temperature=0.7, max_tokens=3000):
                streamed_response += chunk
                yield "response_chunk", chunk
        except Exception as e:
            streamed_response = f"\n\n(Error during fast response: {str(e)[:150]})"
            yield "response_chunk", streamed_response
            
        final_bot_text = streamed_response.strip()
        yield "final_response", {"response": final_bot_text}
        return

    plan = action_plan_data.get("plan", [])
    if not plan:
        plan = [{"tool": "web_search", "task": user_input}, {"tool": "respond", "task": "Synthesize a response."}]
    
    yield "plan", plan
    
    research_scratchpad = ""
    now_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')

    for i, step_action in enumerate(plan):
        tool = step_action.get("tool")
        task = step_action.get("task")
        
        if tool == 'respond':
            break

        if i + 1 > max_research_steps:
            research_scratchpad += f"\n\n---NOTE: Maximum research step budget of {max_research_steps} reached. Proceeding to final response.---\n"
            logger.warning(f"PUI_GRADIO [{request_id}]: Max research steps ({max_research_steps}) reached.")
            break
        
        task_for_display = str(task) if isinstance(task, dict) else task
        yield "status", f"<i>[Executing Step {i+1}/{len(plan)-1}: {tool} -> {task_for_display[:70]}...]</i>"
        
        step_findings = f"Step {i+1} ({tool}: '{task_for_display[:1000]}'): "
        
        if tool == 'web_search':
            try:
                web_results = search_and_scrape_duckduckgo(task, num_results=5)
                scraped_content = "\n".join([f"Source:\nURL:{r.get('url','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:1500]}\n---" for r in web_results]) if web_results else "No results found."
                synthesis_prompt = f"Relevant web content for the task '{task}':\n\n{scraped_content}\n\nConcisely summarize the findings from the content."
                summary = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": synthesis_prompt}], api_key_override=ui_api_key_override, temperature=0.1, max_tokens=400)))
                step_findings += summary
            except Exception as e:
                step_findings += f"Error during web search: {e}"
                
        elif tool == 'web_scrape':
            try:
                web_results = scrape_url(task)
                scraped_content = "\n".join([f"Source:\nURL:{r.get('url','N/A')}\nContent:\n{(r.get('content') or r.get('error') or 'N/A')[:1500]}\n---" for r in web_results]) if web_results else "No results found."
                synthesis_prompt = f"Relevant web content for the task '{task}':\n\n{scraped_content}\n\nConcisely summarize the findings from the content."
                summary = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": synthesis_prompt}], api_key_override=ui_api_key_override, temperature=0.1, max_tokens=400)))
                step_findings += summary
            except Exception as e:
                step_findings += f"Error during web scrape: {e}"

        elif tool == 'gradio_view_api':
            try:
                client = Client(task)
                api_info = client.view_api(all_endpoints=True)
                summary = str(api_info)
                if summary and summary.strip():
                    step_findings += f"Successfully retrieved API endpoints for space '{task}':\n{summary}"
                else:
                    step_findings += f"Could not retrieve valid API endpoint information for space '{task}'."
            except Exception as e:
                error_message = f"Error viewing Gradio API for space '{task}': {e}"
                logger.error(f"GRADIO_VIEW_API_TOOL Error: {e}\nTask was: {task}", exc_info=True)
                step_findings += error_message
                
        elif tool == 'gradio_client':
            try:
                if isinstance(task, str):
                    try:
                        params = json.loads(task)
                    except json.JSONDecodeError:
                        json_match = re.search(r"\{.*\}", task, re.DOTALL)
                        if json_match:
                            params = json.loads(json_match.group(0))
                        else:
                            raise ValueError("Task is not a valid JSON string or does not contain a JSON object.")
                elif isinstance(task, dict):
                    params = task
                else:
                    raise TypeError(f"Unsupported task type for gradio_client: {type(task)}")

                space_id = params.get("space_id")
                api_name = params.get("api_name")
                parameters = params.get("parameters", {})

                if not space_id or not api_name:
                    raise ValueError("Missing 'space_id' or 'api_name' in task JSON.")

                if not isinstance(parameters, dict):
                    raise TypeError("The 'parameters' field in the task must be a JSON object (dictionary).")

                client = Client(space_id)
                result = client.predict(**parameters, api_name=api_name)

                if isinstance(result, (str, int, float, bool)):
                    result_str = str(result)
                elif isinstance(result, (dict, list)):
                    result_str = json.dumps(result, indent=2)
                else:
                    result_str = f"Received result of type {type(result)}."
                
                step_findings += f"Successfully called Gradio API {api_name} on space {space_id}. Result:\n{result_str}"

            except Exception as e:
                error_message = f"Error during Gradio Client operation: {e}"
                logger.error(f"GRADIO_CLIENT_TOOL Error: {e}\nTask was: {task}", exc_info=True)
                step_findings += error_message
                
        elif tool == 'memory_search':
            try:
                retrieved_mems = retrieve_memories_semantic(task, k=3)
                if retrieved_mems:
                    memory_context = "\n".join([f"- User: {m.get('user_input','')} -> AI: {m.get('bot_response','')} (Takeaway: {m.get('metrics',{}).get('takeaway','N/A')})" for m in retrieved_mems])
                    step_findings += f"Found relevant memories:\n{memory_context}"
                else:
                    step_findings += "No relevant memories found."
            except Exception as e:
                step_findings += f"Error during memory search: {e}"

        elif tool == 'think':
            try:
                think_prompt = f"Original Query: '{user_input}'\n\nResearch Scratchpad:\n```\n{research_scratchpad}\n```\n\nMy current thinking task is: '{task}'. Based on the scratchpad, what is the conclusion of this thinking step?"
                thought = "".join(list(call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=[{"role": "user", "content": think_prompt}], api_key_override=ui_api_key_override, temperature=0.3, max_tokens=500)))
                step_findings += f"Conclusion: {thought}"
            except Exception as e:
                step_findings += f"Error during thinking step: {e}"
        else:
            step_findings += "Unknown tool specified in plan."

        research_scratchpad += f"\n\n---\n{step_findings}\n---"
        yield "step_result", {"step": i + 1, "tool": tool, "task": task_for_display, "result": step_findings}

    yield "status", "<i>[Synthesizing final report...]</i>"

    final_sys_prompt = custom_system_prompt or DEFAULT_SYSTEM_PROMPT
    final_sys_prompt += f"\n\nCurrent Date/Time: {now_str}. You have just completed a research plan. Synthesize the information in the 'Research Scratchpad' into a final, comprehensive answer. Cite sources by including URLs if available."
    final_user_prompt = f"Original user query: \"{user_input}\"\n\nResearch Scratchpad:\n```\n{research_scratchpad}\n```\n\nNow, provide the final, synthesized answer to the user."
    final_messages = [{"role": "system", "content": final_sys_prompt}, {"role": "user", "content": final_user_prompt}]

    streamed_response = ""
    try:
        for chunk in call_model_stream(provider=provider_name, model_display_name=model_display_name, messages=final_messages, api_key_override=ui_api_key_override, temperature=0.6, max_tokens=3000):
            streamed_response += chunk
            yield "response_chunk", chunk
    except Exception as e:
        error_msg = f"\n\n(Error during final synthesis: {str(e)[:150]})"
        streamed_response += error_msg
        yield "response_chunk", error_msg

    final_bot_text = streamed_response.strip() or "(No response or error during synthesis.)"
    logger.info(f"PUI_GRADIO [{request_id}]: Finished. Total: {time.time() - process_start_time:.2f}s. Resp len: {len(final_bot_text)}")
    yield "final_response", {"response": final_bot_text}

    
def perform_post_interaction_learning(user_input: str, bot_response: str, provider: str, model_disp_name: str, api_key_override: str = None):
    task_id = os.urandom(4).hex()
    logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: START User='{user_input[:40]}...', Bot='{bot_response[:40]}...'")
    learning_start_time = time.time()
    significant_learnings_summary = []

    try:
        metrics = generate_interaction_metrics(user_input, bot_response, provider, model_disp_name, api_key_override)
        logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Metrics: {metrics}")
        add_memory_entry(user_input, metrics, bot_response)

        summary = f"User:\"{user_input}\"\nAI:\"{bot_response}\"\nMetrics(takeaway):{metrics.get('takeaway','N/A')},Success:{metrics.get('response_success_score','N/A')}"
        existing_rules_ctx = "\n".join([f"- \"{r}\"" for r in retrieve_rules_semantic(f"{summary}\n{user_input}", k=10)]) or "No existing rules context."

        insight_user_prompt = INSIGHT_GENERATION_USER_PROMPT_TEMPLATE.format(summary=summary, existing_rules_ctx=existing_rules_ctx)
        insight_msgs = [{"role":"system", "content":INSIGHT_GENERATION_SYSTEM_PROMPT}, {"role":"user", "content":insight_user_prompt}]
        insight_prov, insight_model_disp = provider, model_disp_name
        insight_env_model = os.getenv("INSIGHT_MODEL_OVERRIDE")
        if insight_env_model and "/" in insight_env_model:
            i_p, i_id = insight_env_model.split('/', 1)
            i_d_n = next((dn for dn, mid in MODELS_BY_PROVIDER.get(i_p.lower(), {}).get("models", {}).items() if mid == i_id), None)
            if i_d_n: insight_prov, insight_model_disp = i_p, i_d_n
        logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Generating insights with {insight_prov}/{insight_model_disp} (expecting XML)")

        raw_ops_xml_full = "".join(list(call_model_stream(provider=insight_prov, model_display_name=insight_model_disp, messages=insight_msgs, api_key_override=api_key_override, temperature=0.0, max_tokens=3500))).strip()

        ops_data_list, processed_count = [], 0

        xml_match = re.search(r"```xml\s*(<operations_list>.*</operations_list>)\s*```", raw_ops_xml_full, re.DOTALL | re.IGNORECASE) or \
                    re.search(r"(<operations_list>.*</operations_list>)", raw_ops_xml_full, re.DOTALL | re.IGNORECASE)

        if xml_match:
            xml_content_str = xml_match.group(1)
            try:
                root = ET.fromstring(xml_content_str)
                if root.tag == "operations_list":
                    for op_element in root.findall("operation"):
                        action_el = op_element.find("action")
                        insight_el = op_element.find("insight")
                        old_insight_el = op_element.find("old_insight_to_replace")

                        action = action_el.text.strip().lower() if action_el is not None and action_el.text else None
                        insight_text = insight_el.text.strip() if insight_el is not None and insight_el.text else None
                        old_insight_text = old_insight_el.text.strip() if old_insight_el is not None and old_insight_el.text else None

                        if action and insight_text:
                            ops_data_list.append({
                                "action": action,
                                "insight": insight_text,
                                "old_insight_to_replace": old_insight_text
                            })
                        else:
                            logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Skipped XML operation due to missing action or insight text. Action: {action}, Insight: {insight_text}")
                else:
                    logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML root tag is not <operations_list>. Found: {root.tag}. XML content:\n{xml_content_str}")
            except ET.ParseError as e:
                logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: XML parsing error: {e}. XML content that failed:\n{xml_content_str}")
            except Exception as e_xml_proc:
                logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: Error processing parsed XML: {e_xml_proc}. XML content:\n{xml_content_str}")
        else:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No <operations_list> XML structure found in LLM output. Full raw output:\n{raw_ops_xml_full}")

        if ops_data_list:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: LLM provided {len(ops_data_list)} insight ops from XML.")
            for op_idx, op_data in enumerate(ops_data_list):
                action = op_data["action"]
                insight_text = op_data["insight"]
                old_insight = op_data["old_insight_to_replace"]

                if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\]", insight_text, re.I|re.DOTALL):
                    logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to invalid insight_text format from XML: '{insight_text[:100]}...'")
                    continue

                if action == "add":
                    success, status_msg = add_rule_entry(insight_text)
                    if success:
                        processed_count +=1
                        if insight_text.upper().startswith("[CORE_RULE"):
                            significant_learnings_summary.append(f"New Core Rule Added: {insight_text}")
                    else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (add from XML): Failed to add rule '{insight_text[:50]}...'. Status: {status_msg}")
                elif action == "update":
                    if old_insight and old_insight != insight_text:
                        remove_success = remove_rule_entry(old_insight)
                        if not remove_success:
                             logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to remove old rule '{old_insight[:50]}...' before adding new.")

                    success, status_msg = add_rule_entry(insight_text)
                    if success:
                        processed_count +=1
                        if insight_text.upper().startswith("[CORE_RULE"):
                             significant_learnings_summary.append(f"Core Rule Updated to: {insight_text}")
                    else: logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx} (update from XML): Failed to add/update rule '{insight_text[:50]}...'. Status: {status_msg}")
                else:
                    logger.warning(f"POST_INTERACTION_LEARNING [{task_id}]: Op {op_idx}: Skipped op due to unknown action '{action}' from XML.")

            if significant_learnings_summary:
                learning_digest = "SYSTEM CORE LEARNING DIGEST:\n" + "\n".join(significant_learnings_summary)
                system_metrics = {
                    "takeaway": "Core knowledge refined.",
                    "response_success_score": 1.0,
                    "future_confidence_score": 1.0,
                    "type": "SYSTEM_REFLECTION"
                }
                add_memory_entry(
                    user_input="SYSTEM_INTERNAL_REFLECTION_TRIGGER",
                    metrics=system_metrics,
                    bot_response=learning_digest
                )
                logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Added CORE_LEARNING_DIGEST to memories: {learning_digest[:100]}...")

            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: Processed {processed_count} insight ops out of {len(ops_data_list)} received from XML.")
        else:
            logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: No valid insight operations derived from LLM's XML output.")

    except Exception as e: logger.error(f"POST_INTERACTION_LEARNING [{task_id}]: CRITICAL ERROR in learning task: {e}", exc_info=True)
    logger.info(f"POST_INTERACTION_LEARNING [{task_id}]: END. Total: {time.time() - learning_start_time:.2f}s")


def handle_gradio_chat_submit(user_msg_txt: str, max_research_steps: int, gr_hist_list: list, sel_prov_name: str, sel_model_disp_name: str, ui_api_key: str|None, cust_sys_prompt: str):
    global current_chat_session_history
    cleared_input, updated_gr_hist, status_txt = "", list(gr_hist_list), "Initializing..."
    updated_rules_text = ui_refresh_rules_display_fn()
    updated_mems_json = ui_refresh_memories_display_fn()
    log_html_output = gr.HTML("<p><i>Research Log will appear here.</i></p>")
    final_report_tb = gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True)
    dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
    
    if not user_msg_txt.strip():
        status_txt = "Error: Empty message."
        updated_gr_hist.append((user_msg_txt or "(Empty)", status_txt))
        yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)
        return

    updated_gr_hist.append((user_msg_txt, "<i>Thinking... See Research Log below for progress.</i>"))
    yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)

    internal_hist = list(current_chat_session_history)

    final_bot_resp_acc = ""
    temp_dl_file_path = None
    
    try:
        processor_gen = process_user_interaction_gradio(
            user_input=user_msg_txt, 
            max_research_steps=max_research_steps,
            provider_name=sel_prov_name, 
            model_display_name=sel_model_disp_name, 
            chat_history=internal_hist,
            custom_system_prompt=cust_sys_prompt.strip() or None, 
            ui_api_key_override=ui_api_key.strip() if ui_api_key else None
        )
        
        curr_bot_disp_msg = ""
        full_plan = []
        log_html_parts = []

        for upd_type, upd_data in processor_gen:
            if upd_type == "status":
                status_txt = upd_data
                if "Deciding" in status_txt or "Executing" in status_txt:
                     log_html_output = gr.HTML(f"<p><i>{status_txt}</i></p>")
            
            elif upd_type == "plan":
                full_plan = upd_data
                log_html_parts = ["<h3>Action Plan</h3><ol>"]
                for i, step in enumerate(full_plan):
                    log_html_parts.append(f'<li id="log-step-{i+1}"><strong>{step.get("tool")}</strong>: {step.get("task")} <span style="color:gray;">(Pending)</span></li>')
                log_html_parts.append("</ol><hr><h3>Log</h3>")
                log_html_output = gr.HTML("".join(log_html_parts))

            elif upd_type == "step_result":
                step_num = upd_data["step"]
                sanitized_result = upd_data["result"].replace('<', '<').replace('>', '>').replace('\n', '<br>')
                log_html_parts[step_num] = f'<li id="log-step-{step_num}"><strong>{upd_data.get("tool")}</strong>: {upd_data.get("task")} <span style="color:green;">(Done)</span></li>'
                log_html_parts.append(f'<div style="margin-left: 20px; padding: 5px; border-left: 2px solid #ccc;"><small style="color: #555;">{sanitized_result}</small></div>')
                
                next_step_index_in_list = step_num + 1
                if next_step_index_in_list < len(full_plan) + 1:
                     next_step_action = full_plan[step_num]
                     if next_step_action.get("tool") != "respond":
                        log_html_parts[next_step_index_in_list] = f'<li id="log-step-{next_step_index_in_list}"><strong>{next_step_action.get("tool")}</strong>: {next_step_action.get("task")} <span style="color:blue;">(In Progress...)</span></li>'

                log_html_output = gr.HTML("".join(log_html_parts))
            
            elif upd_type == "response_chunk":
                curr_bot_disp_msg += upd_data
                if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
                    updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg)
            
            elif upd_type == "final_response":
                final_bot_resp_acc = upd_data["response"]
                status_txt = "Response generated. Processing learning..."
                if not curr_bot_disp_msg and final_bot_resp_acc: curr_bot_disp_msg = final_bot_resp_acc
                
                if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
                    updated_gr_hist[-1] = (user_msg_txt, curr_bot_disp_msg or "(No text)")
                final_report_tb = gr.Textbox(value=curr_bot_disp_msg, interactive=True, show_copy_button=True)

                if curr_bot_disp_msg and not curr_bot_disp_msg.startswith("Error:"):
                    try:
                        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".md", encoding='utf-8') as tmpfile:
                            tmpfile.write(curr_bot_disp_msg)
                            temp_dl_file_path = tmpfile.name
                        dl_report_btn = gr.DownloadButton(value=temp_dl_file_path, visible=True, interactive=True)
                    except Exception as e:
                        logger.error(f"Error creating temp file for download: {e}", exc_info=False)
                        dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False, label="Download Error")
                else:
                    dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)

            yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)

            if upd_type == "final_response": break

    except Exception as e:
        logger.error(f"Chat handler error during main processing: {e}", exc_info=True)
        status_txt = f"Error: {str(e)[:100]}"
        error_message_for_chat = f"Sorry, an error occurred: {str(e)[:100]}"
        if updated_gr_hist and updated_gr_hist[-1][0] == user_msg_txt:
            updated_gr_hist[-1] = (user_msg_txt, error_message_for_chat)
        final_report_tb = gr.Textbox(value=error_message_for_chat, interactive=True)
        dl_report_btn = gr.DownloadButton(interactive=False, value=None, visible=False)
        log_html_output = gr.HTML(f'<p style="color:red;"><strong>Error processing request.</strong></p>')
        current_rules_text_on_error = ui_refresh_rules_display_fn()
        current_mems_json_on_error = ui_refresh_memories_display_fn()
        yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, current_rules_text_on_error, current_mems_json_on_error)
        if temp_dl_file_path and os.path.exists(temp_dl_file_path):
            try: os.unlink(temp_dl_file_path)
            except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path} after error: {e_unlink}")
        return

    if final_bot_resp_acc and not final_bot_resp_acc.startswith("Error:"):
        current_chat_session_history.extend([{"role": "user", "content": user_msg_txt}, {"role": "assistant", "content": final_bot_resp_acc}])
        
        status_txt = "<i>[Performing post-interaction learning...]</i>"
        current_rules_text_before_learn = ui_refresh_rules_display_fn()
        current_mems_json_before_learn = ui_refresh_memories_display_fn()
        yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, current_rules_text_before_learn, current_mems_json_before_learn)

        try:
            perform_post_interaction_learning(
                user_input=user_msg_txt,
                bot_response=final_bot_resp_acc,
                provider=sel_prov_name,
                model_disp_name=sel_model_disp_name,
                api_key_override=ui_api_key.strip() if ui_api_key else None
            )
            status_txt = "Response & Learning Complete."
        except Exception as e_learn:
            logger.error(f"Error during post-interaction learning: {e_learn}", exc_info=True)
            status_txt = "Response complete. Error during learning."
    else:
        status_txt = "Processing finished; no valid response or error occurred."

    updated_rules_text = ui_refresh_rules_display_fn()
    updated_mems_json = ui_refresh_memories_display_fn()

    yield (cleared_input, updated_gr_hist, status_txt, log_html_output, final_report_tb, dl_report_btn, updated_rules_text, updated_mems_json)

    if temp_dl_file_path and os.path.exists(temp_dl_file_path):
        try: os.unlink(temp_dl_file_path)
        except Exception as e_unlink: logger.error(f"Error deleting temp download file {temp_dl_file_path}: {e_unlink}")

def ui_refresh_rules_display_fn(): return "\n\n---\n\n".join(get_all_rules_cached()) or "No rules found."
def ui_refresh_memories_display_fn(): return get_all_memories_cached() or []

def ui_download_rules_action_fn():
    rules_content = "\n\n---\n\n".join(get_all_rules_cached())
    if not rules_content.strip():
        gr.Warning("No rules to download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Rules")
    try:
        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt", encoding='utf-8') as tmpfile:
            tmpfile.write(rules_content)
            return tmpfile.name
    except Exception as e:
        logger.error(f"Error creating rules download file: {e}")
        gr.Error(f"Failed to prepare rules for download: {e}")
        return gr.DownloadButton(value=None, interactive=False, label="Error")

def ui_upload_rules_action_fn(uploaded_file_obj, progress=gr.Progress()):
    if not uploaded_file_obj: return "No file provided for rules upload."
    try:
        with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
    except Exception as e_read: return f"Error reading file: {e_read}"
    if not content.strip(): return "Uploaded rules file is empty."
    added_count, skipped_count, error_count = 0,0,0
    potential_rules = []
    file_name_lower = uploaded_file_obj.name.lower()
    if file_name_lower.endswith(".txt"):
        potential_rules = content.split("\n\n---\n\n")
        if len(potential_rules) == 1 and "\n" in content:
             potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
    elif file_name_lower.endswith(".jsonl"):
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try:
                    rule_text_in_json_string = json.loads(line)
                    if isinstance(rule_text_in_json_string, str):
                        potential_rules.append(rule_text_in_json_string)
                    else:
                        logger.warning(f"Rule Upload (JSONL): Line {line_num+1} did not contain a string value. Got: {type(rule_text_in_json_string)}")
                        error_count +=1
                except json.JSONDecodeError:
                    logger.warning(f"Rule Upload (JSONL): Line {line_num+1} failed to parse as JSON: {line[:100]}")
                    error_count +=1
    else:
        return "Unsupported file type for rules. Please use .txt or .jsonl."
    valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
    total_to_process = len(valid_potential_rules)
    if total_to_process == 0 and error_count == 0: return "No valid rules found in file to process."
    elif total_to_process == 0 and error_count > 0: return f"No valid rules found to process. Encountered {error_count} parsing/format errors."
    progress(0, desc="Starting rules upload...")
    for idx, rule_text in enumerate(valid_potential_rules):
        success, status_msg = add_rule_entry(rule_text)
        if success: added_count += 1
        elif status_msg == "duplicate": skipped_count += 1
        else: error_count += 1
        progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} rules...")
    msg = f"Rules Upload: Total valid rule segments processed: {total_to_process}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors (parsing/add): {error_count}."
    logger.info(msg); return msg

def ui_download_memories_action_fn():
    memories = get_all_memories_cached()
    if not memories:
        gr.Warning("No memories to download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Memories")
    jsonl_content = ""
    for mem_dict in memories:
        try: jsonl_content += json.dumps(mem_dict) + "\n"
        except Exception as e: logger.error(f"Error serializing memory for download: {mem_dict}, Error: {e}")
    if not jsonl_content.strip():
        gr.Warning("No valid memories to serialize for download.")
        return gr.DownloadButton(value=None, interactive=False, label="No Data")
    try:
        with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".jsonl", encoding='utf-8') as tmpfile:
            tmpfile.write(jsonl_content)
            return tmpfile.name
    except Exception as e:
        logger.error(f"Error creating memories download file: {e}")
        gr.Error(f"Failed to prepare memories for download: {e}")
        return gr.DownloadButton(value=None, interactive=False, label="Error")

def ui_upload_memories_action_fn(uploaded_file_obj, progress=gr.Progress()):
    if not uploaded_file_obj: return "No file provided for memories upload."
    try:
        with open(uploaded_file_obj.name, 'r', encoding='utf-8') as f: content = f.read()
    except Exception as e_read: return f"Error reading file: {e_read}"
    if not content.strip(): return "Uploaded memories file is empty."
    added_count, format_error_count, save_error_count = 0,0,0
    memory_objects_to_process = []
    file_ext = os.path.splitext(uploaded_file_obj.name.lower())[1]
    if file_ext == ".json":
        try:
            parsed_json = json.loads(content)
            if isinstance(parsed_json, list): memory_objects_to_process = parsed_json
            elif isinstance(parsed_json, dict): memory_objects_to_process = [parsed_json]
            else:
                logger.warning(f"Memories Upload (.json): File content is not a JSON list or object. Type: {type(parsed_json)}"); format_error_count = 1
        except json.JSONDecodeError as e:
            logger.warning(f"Memories Upload (.json): Invalid JSON file. Error: {e}"); format_error_count = 1
    elif file_ext == ".jsonl":
        for line_num, line in enumerate(content.splitlines()):
            line = line.strip()
            if line:
                try: memory_objects_to_process.append(json.loads(line))
                except json.JSONDecodeError:
                    logger.warning(f"Memories Upload (.jsonl): Line {line_num+1} parse error: {line[:100]}"); format_error_count += 1
    else: return "Unsupported file type for memories. Please use .json or .jsonl."
    if not memory_objects_to_process and format_error_count > 0 : return f"Memories Upload: File parsing failed. Found {format_error_count} format errors and no processable objects."
    elif not memory_objects_to_process: return "No valid memory objects found in the uploaded file."
    total_to_process = len(memory_objects_to_process)
    if total_to_process == 0: return "No memory objects to process (after parsing)."
    progress(0, desc="Starting memories upload...")
    for idx, mem_data in enumerate(memory_objects_to_process):
        if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
            success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
            if success: added_count += 1
            else: save_error_count += 1
        else:
            logger.warning(f"Memories Upload: Skipped invalid memory object structure: {str(mem_data)[:100]}"); format_error_count += 1
        progress((idx + 1) / total_to_process, desc=f"Processed {idx+1}/{total_to_process} memories...")
    msg = f"Memories Upload: Processed {total_to_process} objects. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}."
    logger.info(msg); return msg

def save_edited_rules_action_fn(edited_rules_text: str, progress=gr.Progress()):
    if DEMO_MODE:
        gr.Warning("Saving edited rules is disabled in Demo Mode.")
        return "Saving edited rules is disabled in Demo Mode."
    if not edited_rules_text.strip():
        return "No rules text to save."
    
    stats = process_rules_from_text_blob(edited_rules_text, progress)
    return f"Editor Save: Added: {stats['added']}, Skipped (duplicates): {stats['skipped']}, Errors/Invalid: {stats['errors']} from {stats['total']} unique rules in text."


def ui_upload_kb_from_image_fn(uploaded_image_filepath: str, password: str, progress=gr.Progress()):
    if DEMO_MODE: 
        gr.Warning("Uploading is disabled in Demo Mode.")
        return "Upload disabled in Demo Mode."
    if not uploaded_image_filepath: 
        return "No image file provided or pasted."
        
    progress(0, desc="Loading and standardizing image...")
    try: 
        img_temp = Image.open(uploaded_image_filepath)
        img = set_pil_image_format_to_png(img_temp)
    except Exception as e: 
        logger.error(f"KB ImgUL: Open/Standardize fail: {e}")
        return f"Error: Could not open or process image file: {e}"

    progress(0.2, desc="Extracting data from image...")
    try:
        extracted_bytes = extract_data_from_image(img)
        if not extracted_bytes: return "No data found embedded in the image."
    except ValueError as e: 
        logger.error(f"KB ImgUL: Extract fail: {e}")
        return f"Error extracting data: {e}"
    except Exception as e: 
        logger.error(f"KB ImgUL: Extract error: {e}", exc_info=True)
        return f"Unexpected extraction error: {e}"
    
    kv_string = ""
    try:
        if extracted_bytes[:20].decode('utf-8', errors='ignore').strip().startswith("# iLearn"):
             kv_string = extracted_bytes.decode('utf-8')
             progress(0.4, desc="Parsing data...")
        elif password and password.strip():
            progress(0.3, desc="Attempting decryption...")
            kv_string = decrypt_data(extracted_bytes, password.strip()).decode('utf-8')
            progress(0.4, desc="Parsing decrypted data...")
        else: return "Data appears encrypted, but no password was provided."
    except (UnicodeDecodeError, InvalidTag, ValueError) as e:
        if "decryption" in str(e).lower() or isinstance(e, InvalidTag):
            return f"Decryption Failed. Check password or file integrity. Details: {e}"
        return "Data is binary and requires a password for decryption."
    except Exception as e: 
        logger.error(f"KB ImgUL: Decrypt/Parse error: {e}", exc_info=True)
        return f"Unexpected error during decryption or parsing: {e}"

    if not kv_string: return "Could not get data from image (after potential decryption)."
    try: 
        kv_dict = parse_kv_string_to_dict(kv_string)
    except Exception as e: 
        logger.error(f"KB ImgUL: Parse fail: {e}")
        return f"Error parsing data: {e}"
    if not kv_dict: return "Parsed data is empty."
    
    stats = import_kb_from_kv_dict(kv_dict, progress)
    
    msg = f"Upload Complete. Rules - Add: {stats['rules_added']}, Skip: {stats['rules_skipped']}, Err: {stats['rules_errors']}. Mems - Add: {stats['mems_added']}, Err: {stats['mems_errors']}."
    logger.info(f"Image KB Upload: {msg}")
    return msg

def app_load_fn():
    logger.info("App loading. Initializing systems...")
    initialize_memory_system()
    logger.info("Memory system initialized.")
    rules_added, rules_skipped, rules_errors = load_rules_from_file(LOAD_RULES_FILE)
    rules_load_msg = f"Rules: Added {rules_added}, Skipped {rules_skipped}, Errors {rules_errors} from {LOAD_RULES_FILE or 'None'}."
    logger.info(rules_load_msg)
    mems_added, mems_format_errors, mems_save_errors = load_memories_from_file(LOAD_MEMORIES_FILE)
    mems_load_msg = f"Memories: Added {mems_added}, Format Errors {mems_format_errors}, Save Errors {mems_save_errors} from {LOAD_MEMORIES_FILE or 'None'}."
    logger.info(mems_load_msg)
    final_status = f"AI Systems Initialized. {rules_load_msg} {mems_load_msg} Ready."
    rules_on_load, mems_on_load = ui_refresh_rules_display_fn(), ui_refresh_memories_display_fn()
    return (final_status, rules_on_load, mems_on_load, gr.HTML("<p><i>Research Log will appear here.</i></p>"),
            gr.Textbox(value="*Waiting...*", interactive=True, show_copy_button=True),
            gr.DownloadButton(interactive=False, value=None, visible=False))


placeholder_filename = "placeholder_image.png"
try:
    if not os.path.exists(placeholder_filename):
        img = Image.new('RGB', (200, 100), color='darkblue')
        draw = Image.Draw(img)
        try:
            font = _get_font(PREFERRED_FONTS, 14)
            draw.text((10, 45), "Placeholder KB Image", font=font, fill='white')
        except Exception:
            draw.text((10, 45), "Placeholder", fill='white')
        img.save(placeholder_filename)
        logger.info(f"Created '{placeholder_filename}' for Gradio examples.")
except Exception as e:
    logger.error(f"Could not create placeholder image. The examples may not load correctly. Error: {e}")

def ui_create_kb_image_fn(password: str, content_to_include: list, progress=gr.Progress()):
    include_rules = "Include Rules" in content_to_include
    include_memories = "Include Memories" in content_to_include
    
    if not include_rules and not include_memories:
        gr.Warning("Nothing selected to save.")
        return gr.update(value=None, visible=False), gr.update(value=None, visible=False), "Nothing selected to save."

    progress(0.1, desc="Fetching knowledge base...")
    rules = get_all_rules_cached() if include_rules else []
    memories = get_all_memories_cached() if include_memories else []

    if not rules and not memories:
        gr.Warning("Knowledge base is empty or selected content is empty.")
        return gr.update(value=None, visible=False), gr.update(value=None, visible=False), "No content to save."

    progress(0.2, desc="Serializing data...")
    kv_string = convert_kb_to_kv_string(rules, memories, include_rules, include_memories)
    data_bytes = kv_string.encode('utf-8')

    if password and password.strip():
        progress(0.3, desc="Encrypting data...")
        try:
            data_bytes = encrypt_data(data_bytes, password.strip())
        except Exception as e:
            logger.error(f"KB ImgDL: Encrypt failed: {e}")
            return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"

    progress(0.5, desc="Generating carrier image...")
    carrier_image = generate_brain_carrier_image(w=800, h=800)

    progress(0.6, desc="Adding visual overlay...")
    keys_for_overlay = []
    if include_rules: keys_for_overlay.append(f"Rule Count: {len(rules)}")
    if include_memories: keys_for_overlay.append(f"Memory Count: {len(memories)}")
    
    title_overlay = "Encrypted Knowledge Base" if password and password.strip() else "iLearn Knowledge Base"
    image_with_overlay = draw_key_list_dropdown_overlay(carrier_image, keys=keys_for_overlay, title=title_overlay)

    try:
        progress(0.8, desc="Embedding data into final image...")
        final_image_with_data = embed_data_in_image(image_with_overlay, data_bytes)
    except ValueError as e:
        logger.error(f"KB ImgDL: Embed failed: {e}")
        return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"

    progress(0.9, desc="Preparing final image and download file...")
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
            final_image_with_data.save(tmpfile, format="PNG")
            tmp_path = tmpfile.name
        progress(1.0, desc="Image created!")
        return gr.update(value=tmp_path, visible=True), gr.update(value=tmp_path, visible=True), "Success! Image created."
    except Exception as e:
        logger.error(f"KB ImgDL: Save failed: {e}")
        return gr.update(value=None, visible=False), gr.update(value=None, visible=False), f"Error: {e}"


        
def ui_load_from_sources_fn(image_filepath: str, rules_file_obj: object, mems_file_obj: object, password: str, progress=gr.Progress()):
    if image_filepath:
        progress(0.1, desc="Image source detected. Starting image processing...")
        return ui_upload_kb_from_image_fn(image_filepath, password, progress)
    
    if rules_file_obj:
        progress(0.1, desc="Rules file detected. Starting rules import...")
        return ui_upload_rules_action_fn(rules_file_obj, progress)
        
    if mems_file_obj:
        progress(0.1, desc="Memories file detected. Starting memories import...")
        return ui_upload_memories_action_fn(mems_file_obj, progress)
        
    return "No file or image uploaded. Please provide a source file to load."

    
with gr.Blocks(theme=gr.themes.Soft(), css=".gr-button { margin: 5px; } .gr-textbox, .gr-text-area, .gr-dropdown, .gr-json { border-radius: 8px; } .gr-group { border: 1px solid #e0e0e0; border-radius: 8px; padding: 10px; } .gr-row { gap: 10px; } .gr-tab { border-radius: 8px; } .status-text { font-size: 0.9em; color: #555; } .gr-json { max-height: 400px; overflow-y: auto; }") as demo:

    gr.Markdown(f"# πŸ€– iLearn: An Autonomous Learning Agent {'(DEMO MODE)' if DEMO_MODE else ''}", elem_classes=["header"])
    is_sqlite, is_hf_dataset = (MEMORY_STORAGE_BACKEND == "SQLITE"), (MEMORY_STORAGE_BACKEND == "HF_DATASET")
    with gr.Row(variant="compact"):
        agent_stat_tb = gr.Textbox(label="Agent Status", value="Initializing systems...", interactive=False, elem_classes=["status-text"], scale=4)
        with gr.Column(scale=1, min_width=150):
            memory_backend_info_tb = gr.Textbox(label="Memory Backend", value=MEMORY_STORAGE_BACKEND, interactive=False, elem_classes=["status-text"])
            sqlite_path_display = gr.Textbox(label="SQLite Path", value=MEMORY_SQLITE_PATH, interactive=False, visible=is_sqlite, elem_classes=["status-text"])
            hf_repos_display = gr.Textbox(label="HF Repos", value=f"M: {MEMORY_HF_MEM_REPO}, R: {MEMORY_HF_RULES_REPO}", interactive=False, visible=is_hf_dataset, elem_classes=["status-text"])
    with gr.Sidebar():
        gr.Markdown("## βš™οΈ Configuration")
        with gr.Group():
            gr.Markdown("### AI Model Settings")
            api_key_tb = gr.Textbox(label="AI Provider API Key (Override)", type="password", placeholder="Uses .env if blank")
            available_providers = get_available_providers(); default_provider = available_providers[0] if "groq" not in available_providers else "groq"
            prov_sel_dd = gr.Dropdown(label="AI Provider", choices=available_providers, value=default_provider, interactive=True)
            default_model_display = get_default_model_display_name_for_provider(default_provider) if default_provider else None
            model_sel_dd = gr.Dropdown(label="AI Model", choices=get_model_display_names_for_provider(default_provider) if default_provider else [], value=default_model_display, interactive=True)
            research_steps_slider = gr.Slider(label="Max Research Steps", minimum=1, maximum=10, step=1, value=3, interactive=True)
        with gr.Group():
            gr.Markdown("### System Prompt"); sys_prompt_tb = gr.Textbox(label="System Prompt Base", lines=8, value=DEFAULT_SYSTEM_PROMPT, interactive=True)

    with gr.Tabs():
        with gr.TabItem("πŸ’¬ Chat & Research"):
            with gr.Row():
                with gr.Column(scale=3):
                    gr.Markdown("### AI Chat Interface")
                    main_chat_disp = gr.Chatbot(label=None, height=450, bubble_full_width=False,avatar_images=(None, "https://raw.githubusercontent.com/gradio-app/gradio/main/guides/assets/logo.png"), show_copy_button=True, render_markdown=True, sanitize_html=True)
                    with gr.Row(variant="compact"):
                        user_msg_tb = gr.Textbox(show_label=False, placeholder="Ask your research question...", scale=7, lines=1, max_lines=3)
                        send_btn = gr.Button("Send", variant="primary", scale=1, min_width=100)
                    with gr.Accordion("πŸ“ Detailed Response & Research Log", open=True):
                        research_log_html = gr.HTML(label="Research Log", value="<div class='log-container'><p><i>Waiting for a new task to begin...</i></p></div>")
                        fmt_report_tb = gr.Textbox(label="Full AI Response", lines=8, interactive=True, show_copy_button=True)
                        dl_report_btn = gr.DownloadButton("Download Report", value=None, interactive=False, visible=False)

        with gr.TabItem("🧠 Knowledge Base"):
            with gr.Tabs():
                with gr.TabItem("πŸŽ›οΈ System"):
                    gr.Markdown("View and directly manage the current rules and memories in the system.")
                    with gr.Row(equal_height=False, variant='compact'):
                        with gr.Column():
                            gr.Markdown("### πŸ“œ Current Rules")
                            rules_disp_ta = gr.TextArea(label=None, lines=15, placeholder="Rules will appear here.", interactive=True)
                            save_edited_rules_btn = gr.Button("πŸ’Ύ Save Edited Rules", variant="primary", interactive=not DEMO_MODE)
                            clear_rules_btn = gr.Button("πŸ—‘οΈ Clear All Rules", variant="stop", visible=not DEMO_MODE)
                        with gr.Column():
                            gr.Markdown("### πŸ“š Current Memories")
                            mems_disp_json = gr.JSON(label=None, value=[], scale=1)
                            clear_mems_btn = gr.Button("πŸ—‘οΈ Clear All Memories", variant="stop", visible=not DEMO_MODE)

                with gr.TabItem("πŸ’Ύ Save KB"):
                    gr.Markdown("Export the current knowledge base as text files or as a single, portable PNG image.")
                    with gr.Row():
                        rules_stat_tb = gr.Textbox(label="Rules Status", interactive=False, lines=1, elem_classes=["status-text"])
                        mems_stat_tb = gr.Textbox(label="Memories Status", interactive=False, lines=1, elem_classes=["status-text"])
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown("### Text File Export")
                            dl_rules_btn = gr.DownloadButton("⬇️ Download Rules (.txt)", value=None)
                            dl_mems_btn = gr.DownloadButton("⬇️ Download Memories (.jsonl)", value=None)
                            gr.Row()
                            if MEMORY_STORAGE_BACKEND == "RAM": save_faiss_sidebar_btn = gr.Button("Save FAISS Indices", variant="secondary")
                        with gr.Column():
                            gr.Markdown("### Image Export")
                            with gr.Group():
                                save_kb_password_tb = gr.Textbox(label="Password (optional for encryption)", type="password")
                                save_kb_include_cbg = gr.CheckboxGroup(label="Content to Include", choices=["Include Rules", "Include Memories"], value=["Include Rules", "Include Memories"])
                                create_kb_img_btn = gr.Button("✨ Create KB Image", variant="secondary")
                            kb_image_display_output = gr.Image(label="Generated Image (Right-click to copy)", type="filepath", visible=False)
                            kb_image_download_output = gr.DownloadButton("⬇️ Download Image File", visible=False)

                with gr.TabItem("πŸ“‚ Load KB"):
                    gr.Markdown("Import rules, memories, or a full KB from local files or a portable PNG image.")
                    load_status_tb = gr.Textbox(label="Load Operation Status", interactive=False, lines=2)
                    load_kb_password_tb = gr.Textbox(label="Password (for decrypting images)", type="password")
                    with gr.Group():
                        gr.Markdown("#### Sources (Priority: Image > Rules File > Memories File)")
                        with gr.Row():
                             upload_kb_img_fobj = gr.Image(label="1. Image Source", type="filepath", sources=["upload", "clipboard"], interactive=not DEMO_MODE)
                             upload_rules_fobj = gr.File(label="2. Rules File Source (.txt/.jsonl)", file_types=[".txt", ".jsonl"], interactive=not DEMO_MODE)
                             upload_mems_fobj = gr.File(label="3. Memories File Source (.json/.jsonl)", file_types=[".jsonl", ".json"], interactive=not DEMO_MODE)
                    load_master_btn = gr.Button("⬆️ Load from Sources", variant="primary", interactive=not DEMO_MODE)
                    gr.Examples(
                    examples=[
                        ["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.01.png", ""],
                        ["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.011.png", ""],
                        ["https://huggingface.co/spaces/Agents-MCP-Hackathon/iLearn/resolve/main/evolutions/e0.01.012.png", ""],
                    ],
                    inputs=[upload_kb_img_fobj, load_kb_password_tb],
                    label="Click an Example to Load Data"
                    )

    def dyn_upd_model_dd(sel_prov_dyn: str):
        models_dyn = get_model_display_names_for_provider(sel_prov_dyn); def_model_dyn = get_default_model_display_name_for_provider(sel_prov_dyn)
        return gr.Dropdown(choices=models_dyn, value=def_model_dyn, interactive=True)
    prov_sel_dd.change(fn=dyn_upd_model_dd, inputs=prov_sel_dd, outputs=model_sel_dd)

    chat_ins = [user_msg_tb, research_steps_slider, main_chat_disp, prov_sel_dd, model_sel_dd, api_key_tb, sys_prompt_tb]
    chat_outs = [user_msg_tb, main_chat_disp, agent_stat_tb, research_log_html, fmt_report_tb, dl_report_btn, rules_disp_ta, mems_disp_json]
    chat_event_args = {"fn": handle_gradio_chat_submit, "inputs": chat_ins, "outputs": chat_outs}
    send_btn.click(**chat_event_args); user_msg_tb.submit(**chat_event_args)

    save_edited_rules_btn.click(fn=save_edited_rules_action_fn, inputs=[rules_disp_ta], outputs=[rules_stat_tb], show_progress="full").then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)
    clear_rules_btn.click(fn=lambda: ("All rules cleared." if clear_all_rules_data_backend() else "Error clearing rules."), outputs=rules_stat_tb, show_progress=False).then(fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta, show_progress=False)
    clear_mems_btn.click(fn=lambda: ("All memories cleared." if clear_all_memory_data_backend() else "Error clearing memories."), outputs=mems_stat_tb, show_progress=False).then(fn=ui_refresh_memories_display_fn, outputs=mems_disp_json, show_progress=False)

    dl_rules_btn.click(fn=ui_download_rules_action_fn, inputs=None, outputs=dl_rules_btn, show_progress=False)
    dl_mems_btn.click(fn=ui_download_memories_action_fn, inputs=None, outputs=dl_mems_btn, show_progress=False)
    create_kb_img_btn.click(
        fn=ui_create_kb_image_fn,
        inputs=[save_kb_password_tb, save_kb_include_cbg],
        outputs=[kb_image_display_output, kb_image_download_output, load_status_tb],
        show_progress="full"
    )

    load_master_btn.click(
        fn=ui_load_from_sources_fn,
        inputs=[upload_kb_img_fobj, upload_rules_fobj, upload_mems_fobj, load_kb_password_tb],
        outputs=[load_status_tb],
        show_progress="full"
    ).then(
        fn=ui_refresh_rules_display_fn, outputs=rules_disp_ta
    ).then(
        fn=ui_refresh_memories_display_fn, outputs=mems_disp_json
    )

    if MEMORY_STORAGE_BACKEND == "RAM" and 'save_faiss_sidebar_btn' in locals():
        def save_faiss_action_with_feedback_sidebar_fn():
            try: save_faiss_indices_to_disk(); gr.Info("Attempted to save FAISS indices to disk.")
            except Exception as e: logger.error(f"Error saving FAISS indices: {e}", exc_info=True); gr.Error(f"Error saving FAISS indices: {e}")
        save_faiss_sidebar_btn.click(fn=save_faiss_action_with_feedback_sidebar_fn, inputs=None, outputs=None, show_progress=False)

    app_load_outputs = [agent_stat_tb, rules_disp_ta, mems_disp_json, research_log_html, fmt_report_tb, dl_report_btn]
    demo.load(fn=app_load_fn, inputs=None, outputs=app_load_outputs, show_progress="full")

if __name__ == "__main__":
    logger.info(f"Starting Gradio AI Research Mega Agent (v9.1 - Correct 1-Click JS Download, Memory: {MEMORY_STORAGE_BACKEND})...")
    app_port = int(os.getenv("GRADIO_PORT", 7860))
    app_server = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
    app_debug = os.getenv("GRADIO_DEBUG", "False").lower() == "false"
    app_share = os.getenv("GRADIO_SHARE", "False").lower() == "true"
    logger.info(f"Launching Gradio server: http://{app_server}:{app_port}. Debug: {app_debug}, Share: {app_share}")
    demo.queue().launch(server_name=app_server, server_port=app_port, debug=app_debug, share=app_share, mcp_server=True, max_threads=40)
    logger.info("Gradio application shut down.")