Spaces:
Running
Running
File size: 32,908 Bytes
8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 8c665a7 38b39e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
import os
import json
import time
from datetime import datetime
import logging
import re
import threading
try:
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
except ImportError:
SentenceTransformer, faiss, np = None, None, None
logging.warning("SentenceTransformers, FAISS, or NumPy not installed. Semantic search will be unavailable.")
try:
import sqlite3
except ImportError:
sqlite3 = None
logging.warning("sqlite3 module not available. SQLite backend will be unavailable.")
try:
from datasets import load_dataset, Dataset
except ImportError:
load_dataset, Dataset = None, None
logging.warning("datasets library not installed. Hugging Face Dataset backend will be unavailable.")
logger = logging.getLogger(__name__)
for lib_name in ["sentence_transformers", "faiss", "datasets", "huggingface_hub"]:
if logging.getLogger(lib_name):
logging.getLogger(lib_name).setLevel(logging.WARNING)
STORAGE_BACKEND = os.getenv("STORAGE_BACKEND", "HF_DATASET").upper()
SQLITE_DB_PATH = os.getenv("SQLITE_DB_PATH", "app_data/ai_memory.db")
HF_TOKEN = os.getenv("HF_TOKEN")
HF_MEMORY_DATASET_REPO = os.getenv("HF_MEMORY_DATASET_REPO", "broadfield-dev/ai-brain")
HF_RULES_DATASET_REPO = os.getenv("HF_RULES_DATASET_REPO", "broadfield-dev/ai-rules")
_embedder = None
_dimension = 384
_faiss_memory_index = None
_memory_items_list = []
_faiss_rules_index = None
_rules_items_list = []
_initialized = False
_init_lock = threading.Lock()
def _get_sqlite_connection():
if not sqlite3:
raise ImportError("sqlite3 module is required for SQLite backend but not found.")
db_dir = os.path.dirname(SQLITE_DB_PATH)
if db_dir and not os.path.exists(db_dir):
os.makedirs(db_dir, exist_ok=True)
return sqlite3.connect(SQLITE_DB_PATH, timeout=10)
def _init_sqlite_tables():
if STORAGE_BACKEND != "SQLITE" or not sqlite3:
return
try:
with _get_sqlite_connection() as conn:
cursor = conn.cursor()
cursor.execute("""
CREATE TABLE IF NOT EXISTS memories (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_json TEXT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
cursor.execute("""
CREATE TABLE IF NOT EXISTS rules (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_text TEXT NOT NULL UNIQUE,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.commit()
logger.info("SQLite tables for memories and rules checked/created.")
except Exception as e:
logger.error(f"SQLite table initialization error: {e}", exc_info=True)
def initialize_memory_system():
global _initialized, _embedder, _dimension, _faiss_memory_index, _memory_items_list, _faiss_rules_index, _rules_items_list
with _init_lock:
if _initialized:
logger.info("Memory system already initialized.")
return
logger.info(f"Initializing memory system with backend: {STORAGE_BACKEND}")
init_start_time = time.time()
if not SentenceTransformer or not faiss or not np:
logger.error("Core RAG libraries (SentenceTransformers, FAISS, NumPy) not available. Cannot initialize semantic memory.")
_initialized = False
return
if not _embedder:
try:
logger.info("Loading SentenceTransformer model (all-MiniLM-L6-v2)...")
_embedder = SentenceTransformer('all-MiniLM-L6-v2', cache_folder="./sentence_transformer_cache")
_dimension = _embedder.get_sentence_embedding_dimension() or 384
logger.info(f"SentenceTransformer loaded. Dimension: {_dimension}")
except Exception as e:
logger.critical(f"FATAL: Error loading SentenceTransformer: {e}", exc_info=True)
_initialized = False
return
if STORAGE_BACKEND == "SQLITE":
_init_sqlite_tables()
logger.info("Loading memories...")
temp_memories_json = []
if STORAGE_BACKEND == "RAM":
_memory_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_memories_json = [row[0] for row in conn.execute("SELECT memory_json FROM memories ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading memories from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load memories from HF Dataset: {HF_MEMORY_DATASET_REPO}")
dataset = load_dataset(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "memory_json" in dataset["train"].column_names:
temp_memories_json = [m_json for m_json in dataset["train"]["memory_json"] if isinstance(m_json, str)]
else: logger.warning(f"HF Dataset {HF_MEMORY_DATASET_REPO} for memories not found or 'memory_json' column missing.")
except Exception as e: logger.error(f"Error loading memories from HF Dataset ({HF_MEMORY_DATASET_REPO}): {e}")
_memory_items_list = temp_memories_json
logger.info(f"Loaded {len(_memory_items_list)} memory items from {STORAGE_BACKEND}.")
_faiss_memory_index = faiss.IndexFlatL2(_dimension)
if _memory_items_list:
logger.info(f"Building FAISS index for {len(_memory_items_list)} memories...")
texts_to_embed_mem = []
for mem_json_str in _memory_items_list:
try:
mem_obj = json.loads(mem_json_str)
text = f"User: {mem_obj.get('user_input','')}\nAI: {mem_obj.get('bot_response','')}\nTakeaway: {mem_obj.get('metrics',{}).get('takeaway','N/A')}"
texts_to_embed_mem.append(text)
except json.JSONDecodeError:
logger.warning(f"Skipping malformed memory JSON for FAISS indexing: {mem_json_str[:100]}")
if texts_to_embed_mem:
try:
embeddings = _embedder.encode(texts_to_embed_mem, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(texts_to_embed_mem) and embeddings_np.shape[1] == _dimension:
_faiss_memory_index.add(embeddings_np)
else: logger.error(f"Memory embeddings shape error. Expected ({len(texts_to_embed_mem)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_mem: logger.error(f"Error building FAISS memory index: {e_faiss_mem}")
logger.info(f"FAISS memory index built. Total items: {_faiss_memory_index.ntotal if _faiss_memory_index else 'N/A'}")
logger.info("Loading rules...")
temp_rules_text = []
if STORAGE_BACKEND == "RAM":
_rules_items_list = []
elif STORAGE_BACKEND == "SQLITE" and sqlite3:
try:
with _get_sqlite_connection() as conn:
temp_rules_text = [row[0] for row in conn.execute("SELECT rule_text FROM rules ORDER BY created_at ASC")]
except Exception as e: logger.error(f"Error loading rules from SQLite: {e}")
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset and load_dataset:
try:
logger.info(f"Attempting to load rules from HF Dataset: {HF_RULES_DATASET_REPO}")
dataset = load_dataset(HF_RULES_DATASET_REPO, token=HF_TOKEN, trust_remote_code=True)
if "train" in dataset and "rule_text" in dataset["train"].column_names:
temp_rules_text = [r_text for r_text in dataset["train"]["rule_text"] if isinstance(r_text, str) and r_text.strip()]
else: logger.warning(f"HF Dataset {HF_RULES_DATASET_REPO} for rules not found or 'rule_text' column missing.")
except Exception as e: logger.error(f"Error loading rules from HF Dataset ({HF_RULES_DATASET_REPO}): {e}")
_rules_items_list = sorted(list(set(temp_rules_text)))
logger.info(f"Loaded {len(_rules_items_list)} rule items from {STORAGE_BACKEND}.")
_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
logger.info(f"Building FAISS index for {len(_rules_items_list)} rules...")
if _rules_items_list:
try:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False, show_progress_bar=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
_faiss_rules_index.add(embeddings_np)
else: logger.error(f"Rule embeddings shape error. Expected ({len(_rules_items_list)}, {_dimension}), Got {embeddings_np.shape if hasattr(embeddings_np, 'shape') else 'N/A'}")
except Exception as e_faiss_rule: logger.error(f"Error building FAISS rule index: {e_faiss_rule}")
logger.info(f"FAISS rules index built. Total items: {_faiss_rules_index.ntotal if _faiss_rules_index else 'N/A'}")
_initialized = True
logger.info(f"Memory system initialization complete in {time.time() - init_start_time:.2f}s")
def add_memory_entry(user_input: str, metrics: dict, bot_response: str) -> tuple[bool, str]:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index:
return False, "Memory system or embedder not initialized for adding memory."
memory_obj = {
"user_input": user_input,
"metrics": metrics,
"bot_response": bot_response,
"timestamp": datetime.utcnow().isoformat()
}
memory_json_str = json.dumps(memory_obj)
text_to_embed = f"User: {user_input}\nAI: {bot_response}\nTakeaway: {metrics.get('takeaway', 'N/A')}"
try:
embedding = _embedder.encode([text_to_embed], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
logger.error(f"Memory embedding shape error: {embedding_np.shape}. Expected (1, {_dimension})")
return False, "Embedding shape error."
_faiss_memory_index.add(embedding_np)
_memory_items_list.append(memory_json_str)
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT INTO memories (memory_json) VALUES (?)", (memory_json_str,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_memory_items_list)} memories to HF Hub: {HF_MEMORY_DATASET_REPO}")
Dataset.from_dict({"memory_json": list(_memory_items_list)}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added memory. RAM: {len(_memory_items_list)}, FAISS: {_faiss_memory_index.ntotal}")
return True, "Memory added successfully."
except Exception as e:
logger.error(f"Error adding memory entry: {e}", exc_info=True)
return False, f"Error adding memory: {e}"
def retrieve_memories_semantic(query: str, k: int = 3) -> list[dict]:
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_memory_index or _faiss_memory_index.ntotal == 0:
logger.debug("Cannot retrieve memories: Embedder, FAISS index not ready, or index is empty.")
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension:
logger.error(f"Query embedding dimension mismatch. Expected {_dimension}, got {query_embedding_np.shape[1]}")
return []
distances, indices = _faiss_memory_index.search(query_embedding_np, min(k, _faiss_memory_index.ntotal))
results = []
for i in indices[0]:
if 0 <= i < len(_memory_items_list):
try:
results.append(json.loads(_memory_items_list[i]))
except json.JSONDecodeError:
logger.warning(f"Could not parse memory JSON from list at index {i}")
else:
logger.warning(f"FAISS index {i} out of bounds for memory_items_list (len: {len(_memory_items_list)})")
logger.debug(f"Retrieved {len(results)} memories semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving memories semantically: {e}", exc_info=True)
return []
def add_rule_entry(rule_text: str) -> tuple[bool, str]:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index:
return False, "Rule system or embedder not initialized."
rule_text = rule_text.strip()
if not rule_text: return False, "Rule text cannot be empty."
if not re.match(r"\[(CORE_RULE|RESPONSE_PRINCIPLE|BEHAVIORAL_ADJUSTMENT|GENERAL_LEARNING)\|([\d\.]+?)\](.*)", rule_text, re.I|re.DOTALL):
return False, "Invalid rule format."
if rule_text in _rules_items_list:
return False, "duplicate"
try:
embedding = _embedder.encode([rule_text], convert_to_tensor=False)
embedding_np = np.array(embedding, dtype=np.float32).reshape(1, -1)
if embedding_np.shape != (1, _dimension):
return False, "Rule embedding shape error."
_faiss_rules_index.add(embedding_np)
_rules_items_list.append(rule_text)
_rules_items_list.sort()
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("INSERT OR IGNORE INTO rules (rule_text) VALUES (?)", (rule_text,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
logger.info(f"Pushing {len(_rules_items_list)} rules to HF Hub: {HF_RULES_DATASET_REPO}")
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Added rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True, "Rule added successfully."
except Exception as e:
logger.error(f"Error adding rule entry: {e}", exc_info=True)
return False, f"Error adding rule: {e}"
def retrieve_rules_semantic(query: str, k: int = 5) -> list[str]:
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index or _faiss_rules_index.ntotal == 0:
return []
try:
query_embedding = _embedder.encode([query], convert_to_tensor=False)
query_embedding_np = np.array(query_embedding, dtype=np.float32).reshape(1, -1)
if query_embedding_np.shape[1] != _dimension: return []
distances, indices = _faiss_rules_index.search(query_embedding_np, min(k, _faiss_rules_index.ntotal))
results = [_rules_items_list[i] for i in indices[0] if 0 <= i < len(_rules_items_list)]
logger.debug(f"Retrieved {len(results)} rules semantically for query: '{query[:50]}...'")
return results
except Exception as e:
logger.error(f"Error retrieving rules semantically: {e}", exc_info=True)
return []
def remove_rule_entry(rule_text_to_delete: str) -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
if not _embedder or not _faiss_rules_index: return False
rule_text_to_delete = rule_text_to_delete.strip()
if rule_text_to_delete not in _rules_items_list:
return False
try:
_rules_items_list.remove(rule_text_to_delete)
_rules_items_list.sort()
new_faiss_rules_index = faiss.IndexFlatL2(_dimension)
if _rules_items_list:
embeddings = _embedder.encode(_rules_items_list, convert_to_tensor=False)
embeddings_np = np.array(embeddings, dtype=np.float32)
if embeddings_np.ndim == 2 and embeddings_np.shape[0] == len(_rules_items_list) and embeddings_np.shape[1] == _dimension:
new_faiss_rules_index.add(embeddings_np)
else:
logger.error("Error rebuilding FAISS for rules after removal: Embedding shape error. State might be inconsistent.")
_rules_items_list.append(rule_text_to_delete)
_rules_items_list.sort()
return False
_faiss_rules_index = new_faiss_rules_index
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn:
conn.execute("DELETE FROM rules WHERE rule_text = ?", (rule_text_to_delete,))
conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": list(_rules_items_list)}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
logger.info(f"Removed rule. RAM: {len(_rules_items_list)}, FAISS: {_faiss_rules_index.ntotal}")
return True
except Exception as e:
logger.error(f"Error removing rule entry: {e}", exc_info=True)
return False
def get_all_rules_cached() -> list[str]:
if not _initialized: initialize_memory_system()
return list(_rules_items_list)
def get_all_memories_cached() -> list[dict]:
if not _initialized: initialize_memory_system()
mem_dicts = []
for mem_json_str in _memory_items_list:
try: mem_dicts.append(json.loads(mem_json_str))
except: pass
return mem_dicts
def clear_all_memory_data_backend() -> bool:
global _memory_items_list, _faiss_memory_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM memories"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"memory_json": []}).push_to_hub(HF_MEMORY_DATASET_REPO, token=HF_TOKEN, private=True)
_memory_items_list = []
if _faiss_memory_index: _faiss_memory_index.reset()
logger.info("All memories cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all memory data: {e}")
success = False
return success
def clear_all_rules_data_backend() -> bool:
global _rules_items_list, _faiss_rules_index
if not _initialized: initialize_memory_system()
success = True
try:
if STORAGE_BACKEND == "SQLITE" and sqlite3:
with _get_sqlite_connection() as conn: conn.execute("DELETE FROM rules"); conn.commit()
elif STORAGE_BACKEND == "HF_DATASET" and HF_TOKEN and Dataset:
Dataset.from_dict({"rule_text": []}).push_to_hub(HF_RULES_DATASET_REPO, token=HF_TOKEN, private=True)
_rules_items_list = []
if _faiss_rules_index: _faiss_rules_index.reset()
logger.info("All rules cleared from backend and in-memory stores.")
except Exception as e:
logger.error(f"Error clearing all rules data: {e}")
success = False
return success
def load_rules_from_file(filepath: str | None):
if not filepath:
logger.info("LOAD_RULES_FILE environment variable not set. Skipping rules loading from file.")
return 0, 0, 0
if not os.path.exists(filepath):
logger.warning(f"LOAD_RULES: Specified rules file not found: {filepath}. Skipping loading.")
return 0, 0, 0
added_count, skipped_count, error_count = 0, 0, 0
potential_rules = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
logger.error(f"LOAD_RULES: Error reading file {filepath}: {e}", exc_info=False)
return 0, 0, 1
if not content.strip():
logger.info(f"LOAD_RULES: File {filepath} is empty. Skipping loading.")
return 0, 0, 0
file_name_lower = filepath.lower()
if file_name_lower.endswith(".txt"):
potential_rules = content.split("\n\n---\n\n")
if len(potential_rules) == 1 and "\n" in content:
potential_rules = [r.strip() for r in content.splitlines() if r.strip()]
elif file_name_lower.endswith(".jsonl"):
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try:
rule_text_in_json_string = json.loads(line)
if isinstance(rule_text_in_json_string, str):
potential_rules.append(rule_text_in_json_string)
else:
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} did not contain a string value. Got: {type(rule_text_in_json_string)}")
error_count +=1
except json.JSONDecodeError:
logger.warning(f"LOAD_RULES (JSONL): Line {line_num+1} in {filepath} failed to parse as JSON: {line[:100]}")
error_count +=1
else:
logger.error(f"LOAD_RULES: Unsupported file type for rules: {filepath}. Must be .txt or .jsonl")
return 0, 0, 1
valid_potential_rules = [r.strip() for r in potential_rules if r.strip()]
total_to_process = len(valid_potential_rules)
if total_to_process == 0 and error_count == 0:
logger.info(f"LOAD_RULES: No valid rule segments found in {filepath} to process.")
return 0, 0, 0
elif total_to_process == 0 and error_count > 0:
logger.warning(f"LOAD_RULES: No valid rule segments found to process. Encountered {error_count} parsing/format errors in {filepath}.")
return 0, 0, error_count
logger.info(f"LOAD_RULES: Attempting to add {total_to_process} potential rules from {filepath}...")
for idx, rule_text in enumerate(valid_potential_rules):
success, status_msg = add_rule_entry(rule_text)
if success:
added_count += 1
elif status_msg == "duplicate":
skipped_count += 1
else:
logger.warning(f"LOAD_RULES: Failed to add rule from {filepath} (segment {idx+1}): '{rule_text[:50]}...'. Status: {status_msg}")
error_count += 1
logger.info(f"LOAD_RULES: Finished processing {filepath}. Added: {added_count}, Skipped (duplicates): {skipped_count}, Errors: {error_count}.")
return added_count, skipped_count, error_count
def load_memories_from_file(filepath: str | None):
if not filepath:
logger.info("LOAD_MEMORIES_FILE environment variable not set. Skipping memories loading from file.")
return 0, 0, 0
if not os.path.exists(filepath):
logger.warning(f"LOAD_MEMORIES: Specified memories file not found: {filepath}. Skipping loading.")
return 0, 0, 0
added_count, format_error_count, save_error_count = 0, 0, 0
memory_objects_to_process = []
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
except Exception as e:
logger.error(f"LOAD_MEMORIES: Error reading file {filepath}: {e}", exc_info=False)
return 0, 1, 0
if not content.strip():
logger.info(f"LOAD_MEMORIES: File {filepath} is empty. Skipping loading.")
return 0, 0, 0
file_ext = os.path.splitext(filepath.lower())[1]
if file_ext == ".json":
try:
parsed_json = json.loads(content)
if isinstance(parsed_json, list):
memory_objects_to_process = parsed_json
elif isinstance(parsed_json, dict):
memory_objects_to_process = [parsed_json]
else:
logger.warning(f"LOAD_MEMORIES (.json): File content is not a JSON list or object in {filepath}. Type: {type(parsed_json)}")
format_error_count = 1
except json.JSONDecodeError as e:
logger.warning(f"LOAD_MEMORIES (.json): Invalid JSON file {filepath}. Error: {e}")
format_error_count = 1
elif file_ext == ".jsonl":
for line_num, line in enumerate(content.splitlines()):
line = line.strip()
if line:
try:
memory_objects_to_process.append(json.loads(line))
except json.JSONDecodeError:
logger.warning(f"LOAD_MEMORIES (.jsonl): Line {line_num+1} in {filepath} parse error: {line[:100]}")
format_error_count += 1
else:
logger.error(f"LOAD_MEMORIES: Unsupported file type for memories: {filepath}. Must be .json or .jsonl")
return 0, 1, 0
total_to_process = len(memory_objects_to_process)
if total_to_process == 0 and format_error_count > 0 :
logger.warning(f"LOAD_MEMORIES: File parsing failed for {filepath}. Found {format_error_count} format errors and no processable objects.")
return 0, format_error_count, 0
elif total_to_process == 0:
logger.info(f"LOAD_MEMORIES: No memory objects found in {filepath} after parsing.")
return 0, 0, 0
logger.info(f"LOAD_MEMORIES: Attempting to add {total_to_process} memory objects from {filepath}...")
for idx, mem_data in enumerate(memory_objects_to_process):
if isinstance(mem_data, dict) and all(k in mem_data for k in ["user_input", "bot_response", "metrics"]):
success, _ = add_memory_entry(mem_data["user_input"], mem_data["metrics"], mem_data["bot_response"])
if success:
added_count += 1
else:
logger.warning(f"LOAD_MEMORIES: Failed to save memory object from {filepath} (segment {idx+1}). Data: {str(mem_data)[:100]}")
save_error_count += 1
else:
logger.warning(f"LOAD_MEMORIES: Skipped invalid memory object structure in {filepath} (segment {idx+1}): {str(mem_data)[:100]}")
format_error_count += 1
logger.info(f"LOAD_MEMORIES: Finished processing {filepath}. Added: {added_count}, Format/Structure Errors: {format_error_count}, Save Errors: {save_error_count}.")
return added_count, format_error_count, save_error_count
def process_rules_from_text_blob(rules_text: str, progress_callback=None) -> dict:
if not rules_text.strip():
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
potential_rules = rules_text.split("\n\n---\n\n")
if len(potential_rules) == 1 and "\n" in rules_text:
potential_rules = [r.strip() for r in rules_text.splitlines() if r.strip()]
unique_rules = sorted(list(set(filter(None, [r.strip() for r in potential_rules]))))
total_unique = len(unique_rules)
if total_unique == 0:
return {"added": 0, "skipped": 0, "errors": 0, "total": 0}
stats = {"added": 0, "skipped": 0, "errors": 0, "total": total_unique}
for idx, rule_text in enumerate(unique_rules):
success, status_msg = add_rule_entry(rule_text)
if success:
stats["added"] += 1
elif status_msg == "duplicate":
stats["skipped"] += 1
else:
stats["errors"] += 1
if progress_callback is not None:
progress_callback((idx + 1) / total_unique, desc=f"Processed {idx+1}/{total_unique} rules...")
return stats
def import_kb_from_kv_dict(kv_dict: dict, progress_callback=None) -> dict:
rules_to_add, memories_to_add = [], []
for key, value in kv_dict.items():
if key.startswith("rule_"):
try:
rules_to_add.append(json.loads(value))
except:
logger.warning(f"KB Dict Import: Bad rule format for key {key}")
elif key.startswith("memory_"):
try:
mem_dict = json.loads(value)
if isinstance(mem_dict, dict) and all(k in mem_dict for k in ['user_input', 'bot_response', 'metrics']):
memories_to_add.append(mem_dict)
except:
logger.warning(f"KB Dict Import: Bad memory format for key {key}")
stats = {"rules_added": 0, "rules_skipped": 0, "rules_errors": 0, "mems_added": 0, "mems_errors": 0}
total_items = len(rules_to_add) + len(memories_to_add)
processed_items = 0
if progress_callback is not None:
progress_callback(0, desc=f"Importing {total_items} items...")
for rule in rules_to_add:
s, m = add_rule_entry(rule)
if s:
stats["rules_added"] += 1
elif m == "duplicate":
stats["rules_skipped"] += 1
else:
stats["rules_errors"] += 1
processed_items += 1
if progress_callback is not None and total_items > 0:
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
for mem in memories_to_add:
s, _ = add_memory_entry(mem['user_input'], mem['metrics'], mem['bot_response'])
if s:
stats["mems_added"] += 1
else:
stats["mems_errors"] += 1
processed_items += 1
if progress_callback is not None and total_items > 0:
progress_callback(processed_items / total_items, desc=f"Processing item {processed_items}/{total_items}...")
return stats
FAISS_MEMORY_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "memory_index.faiss")
FAISS_RULES_PATH = os.path.join(os.getenv("FAISS_STORAGE_PATH", "app_data/faiss_indices"), "rules_index.faiss")
def save_faiss_indices_to_disk():
if not _initialized or not faiss: return
faiss_dir = os.path.dirname(FAISS_MEMORY_PATH)
if not os.path.exists(faiss_dir): os.makedirs(faiss_dir, exist_ok=True)
if _faiss_memory_index and _faiss_memory_index.ntotal > 0:
try:
faiss.write_index(_faiss_memory_index, FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index saved to disk ({_faiss_memory_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving memory FAISS index: {e}")
if _faiss_rules_index and _faiss_rules_index.ntotal > 0:
try:
faiss.write_index(_faiss_rules_index, FAISS_RULES_PATH)
logger.info(f"Rules FAISS index saved to disk ({_faiss_rules_index.ntotal} items).")
except Exception as e: logger.error(f"Error saving rules FAISS index: {e}")
def load_faiss_indices_from_disk():
global _faiss_memory_index, _faiss_rules_index
if not _initialized or not faiss: return
if os.path.exists(FAISS_MEMORY_PATH) and _faiss_memory_index:
try:
logger.info(f"Loading memory FAISS index from {FAISS_MEMORY_PATH}...")
_faiss_memory_index = faiss.read_index(FAISS_MEMORY_PATH)
logger.info(f"Memory FAISS index loaded ({_faiss_memory_index.ntotal} items).")
if _faiss_memory_index.ntotal != len(_memory_items_list) and len(_memory_items_list) > 0:
logger.warning(f"Memory FAISS index count ({_faiss_memory_index.ntotal}) differs from loaded texts ({len(_memory_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading memory FAISS index: {e}. Will use fresh index.")
if os.path.exists(FAISS_RULES_PATH) and _faiss_rules_index:
try:
logger.info(f"Loading rules FAISS index from {FAISS_RULES_PATH}...")
_faiss_rules_index = faiss.read_index(FAISS_RULES_PATH)
logger.info(f"Rules FAISS index loaded ({_faiss_rules_index.ntotal} items).")
if _faiss_rules_index.ntotal != len(_rules_items_list) and len(_rules_items_list) > 0:
logger.warning(f"Rules FAISS index count ({_faiss_rules_index.ntotal}) differs from loaded texts ({len(_rules_items_list)}). Consider rebuilding FAISS.")
except Exception as e: logger.error(f"Error loading rules FAISS index: {e}. Will use fresh index.") |