File size: 16,715 Bytes
18f9528 d753599 18f9528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import os
import sys
import json
from typing import Any, Dict, Optional, List
import re
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from langchain.agents import initialize_agent
from langchain.agents.types import AgentType
from langchain_core.tools import Tool
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain.agents.mrkl.output_parser import MRKLOutputParser
from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS
from dotenv import load_dotenv
from langchain_community.cache import InMemoryCache
from langchain.globals import set_llm_cache
from agent_api.serpjob import scrape_job_profile
set_llm_cache(InMemoryCache())
load_dotenv()
def extract_json_from_text(text: str) -> str:
"""Extract JSON array from text by finding the first [ and last ]"""
try:
start = text.find('[')
end = text.rfind(']') + 1
if start != -1 and end != 0:
return text[start:end]
return "[]"
except:
return "[]"
class CustomMRKLOutputParser(MRKLOutputParser):
"""Custom output parser that handles JSON responses better"""
def parse(self, text: str) -> Any:
try:
return super().parse(text)
except Exception:
cleaned_text = text.strip()
if cleaned_text.startswith('[') and cleaned_text.endswith(']'):
try:
json.loads(cleaned_text)
from langchain.schema import AgentFinish
return AgentFinish(
return_values={"output": cleaned_text},
log=text
)
except json.JSONDecodeError:
pass
json_part = extract_json_from_text(cleaned_text)
if json_part and json_part != "[]":
try:
json.loads(json_part)
from langchain.schema import AgentFinish
return AgentFinish(
return_values={"output": json_part},
log=text
)
except json.JSONDecodeError:
pass
return super().parse(text)
def lookup(
query: str,
location: str = "Canada",
remote_only: bool = False,
serp_api_key: str = None
) -> str:
"""
Enhanced direct lookup with API key parameter
"""
try:
# Clean the query
query = query.strip()
if "in" in query and location.lower() in query.lower():
query = query.replace(f"in {location}", "").replace(f"In {location}", "").strip()
print(f"π Direct Lookup: Searching for '{query}' in {location} (Remote only: {remote_only})")
# Use the provided API key for the search
result = scrape_job_profile(query, location, serp_api_key)
# Validate result
if not result:
print("No results from scrape_job_profile")
return "[]"
try:
jobs_data = json.loads(result)
if not isinstance(jobs_data, list):
print("Result is not a list format")
return "[]"
print(f"Found {len(jobs_data)} jobs")
return json.dumps(jobs_data)
except json.JSONDecodeError as e:
print(f"JSON decode error in lookup: {e}")
return "[]"
except Exception as e:
print(f"Error in lookup function: {str(e)}")
import traceback
traceback.print_exc()
return "[]"
def lookup_with_llm(
query: str,
location: str = "Canada",
remote: bool = False,
level: str = "Senior",
serp_api_key: str = None,
nebius_api_key: str = None
) -> str:
"""
Enhanced LLM lookup function with API key parameters
"""
try:
if not nebius_api_key:
print("Nebius API key is required for LLM search")
return "[]"
llm = ChatOpenAI(
temperature=0.1,
model_name="meta-llama/Meta-Llama-3.1-405B-Instruct",
api_key=nebius_api_key,
base_url="https://api.studio.nebius.com/v1/",
max_retries=1,
)
# Clean the query
query = query.strip()
if "in" in query and location.lower() in query.lower():
query = query.replace(f"in {location}", "").replace(f"In {location}", "").strip()
print(f"π€ LLM Agent: Searching for '{query}' | Location: '{location}' | Remote: {remote} | Level: {level}")
# Create tool that uses provided SerpAPI key
def job_search_tool(q: str) -> str:
return lookup(q, location, remote, serp_api_key)
tools_for_agent = [
Tool(
name="JobSearch",
func=job_search_tool,
description=f"Searches for {level} level {query} jobs. {'ONLY returns remote work opportunities.' if remote else f'Returns jobs in {location} plus remote opportunities.'}"
)
]
# Enhanced prompt with clearer filtering instructions
remote_instruction = (
"MUST return ONLY remote work opportunities, work-from-home positions, and distributed team roles. NO on-site positions."
if remote else
f"Return jobs in {location} area that allow working from {location}. Include both on-site and hybrid positions."
)
template = """You are an expert job search assistant. Use the JobSearch tool to find jobs matching the exact criteria specified.
SEARCH CRITERIA:
- Position: {level} {input}
- Location Preference: {location}
- Remote Only: {remote_required}
- Filtering Rule: {remote_instruction}
IMPORTANT FILTERING RULES:
1. The JobSearch tool will automatically apply location and remote filtering
2. Remote jobs can be worked from anywhere, so they should be included unless location is very specific
3. On-site jobs should only be included if they match the target location
4. Trust the tool's filtering - it has been enhanced to handle these cases properly
INSTRUCTIONS:
1. Use the JobSearch tool with the query: "{input}"
2. The tool automatically applies the filtering based on the specified criteria
3. Return the complete JSON array from the tool without any modifications
FORMAT:
Thought: I need to search for jobs with the specified criteria and filtering.
Action: JobSearch
Action Input: {input}
Observation: [tool results will be properly filtered]
Thought: The tool has returned filtered results. I'll return them exactly as provided.
Final Answer: [return the exact JSON array from the tool]
CRITICAL: Your Final Answer must be ONLY the JSON array starting with [ and ending with ]. No explanations or additional text.
{format_instructions}"""
prompt = PromptTemplate(
template=template,
input_variables=["input", "level", "location", "remote_required", "remote_instruction"],
partial_variables={"format_instructions": FORMAT_INSTRUCTIONS}
)
# Initialize agent
agent = initialize_agent(
tools=tools_for_agent,
llm=llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
handle_parsing_errors=True,
max_iterations=3,
early_stopping_method="generate",
agent_kwargs={
"output_parser": CustomMRKLOutputParser(),
"format_instructions": FORMAT_INSTRUCTIONS
}
)
# Build search query
search_query = f"{level} {query}"
print(f"π€ LLM Agent: Executing search with query: '{search_query}'")
# Execute agent
result = agent.invoke({
"input": prompt.format(
input=search_query,
level=level,
location=location,
remote_required="YES" if remote else "NO",
remote_instruction=remote_instruction
)
})
# Process result
output = result.get("output", "")
print(f"π€ LLM Agent: Raw output type: {type(output)}")
if isinstance(output, str):
cleaned_output = output.strip()
# Remove common prefixes
prefixes_to_remove = ["Final Answer:", "Answer:", "Result:"]
for prefix in prefixes_to_remove:
if cleaned_output.startswith(prefix):
cleaned_output = cleaned_output[len(prefix):].strip()
# Extract JSON
json_result = extract_json_from_text(cleaned_output)
try:
jobs_data = json.loads(json_result)
if isinstance(jobs_data, list):
print(f"π€ LLM Agent: Successfully returned {len(jobs_data)} filtered jobs")
return json_result
else:
print("π€ LLM Agent: Result is not a list")
return "[]"
except json.JSONDecodeError as e:
print(f"π€ LLM Agent: JSON decode error: {e}")
return "[]"
else:
print(f"π€ LLM Agent: Unexpected output type: {type(output)}")
return "[]"
except Exception as e:
print(f"π€ Error during LLM job search: {e}")
import traceback
traceback.print_exc()
# FALLBACK: Try the direct lookup method
print("π Falling back to direct lookup method...")
try:
return lookup(query, location, remote, serp_api_key)
except Exception as fallback_error:
print(f"π€ Fallback also failed: {fallback_error}")
return "[]"
def advanced_job_search(
query: str,
location: str = "Canada",
remote: bool = False,
level: str = "Senior",
use_llm: bool = True,
salary_min: Optional[int] = None,
job_type: Optional[str] = None,
company_size: Optional[str] = None,
serp_api_key: str = None,
nebius_api_key: str = None
) -> Dict[str, Any]:
"""
Advanced job search function with API key parameters
"""
try:
print(f"π Advanced Job Search Started")
print(f"Query: '{query}' | Location: '{location}' | Level: {level} | Remote: {remote}")
print(f"Salary Min: {salary_min} | Job Type: {job_type} | Company Size: {company_size}")
# Validate required API keys
if not serp_api_key:
return {
"success": False,
"error": "SerpAPI key is required",
"total_found": 0,
"jobs": [],
"raw_results": "[]"
}
if use_llm and not nebius_api_key:
return {
"success": False,
"error": "Nebius API key is required for advanced search",
"total_found": 0,
"jobs": [],
"raw_results": "[]"
}
# Choose search method
if use_llm:
raw_results = lookup_with_llm(
query=query,
location=location,
remote=remote,
level=level,
serp_api_key=serp_api_key,
nebius_api_key=nebius_api_key
)
else:
raw_results = lookup(
query=query,
location=location,
remote_only=remote,
serp_api_key=serp_api_key
)
# Parse results
try:
jobs_data = json.loads(raw_results)
except json.JSONDecodeError:
jobs_data = []
print(f"π Initial results: {len(jobs_data)} jobs")
# Apply additional filters
filtered_jobs = []
for job in jobs_data:
if not isinstance(job, dict):
continue
# Salary filter
if salary_min:
job_salary = job.get('salary', '')
if job_salary and isinstance(job_salary, str) and job_salary.lower() != 'n/a':
salary_numbers = re.findall(r'\d+', job_salary.replace(',', ''))
if salary_numbers:
max_salary = max([int(x) for x in salary_numbers if len(x) >= 4])
if max_salary < salary_min:
print(f" π° Filtered out: {job.get('title', 'N/A')} (salary: {max_salary} < {salary_min})")
continue
else:
print(f" π° Included: {job.get('title', 'N/A')} (salary: {max_salary} >= {salary_min})")
# Job type filter
if job_type and job_type.lower() != 'all':
job_title = job.get('title', '').lower()
if job_type.lower() not in job_title:
print(f" π·οΈ Filtered out: {job.get('title', 'N/A')} (type mismatch)")
continue
else:
print(f" π·οΈ Included: {job.get('title', 'N/A')} (type match)")
filtered_jobs.append(job)
# Prepare response
response = {
"success": True,
"total_found": len(filtered_jobs),
"search_parameters": {
"query": query,
"location": location,
"remote": remote,
"level": level,
"salary_min": salary_min,
"job_type": job_type,
"company_size": company_size,
"method": "LLM Agent" if use_llm else "Direct Search"
},
"jobs": filtered_jobs,
"raw_results": json.dumps(filtered_jobs),
"filtering_applied": {
"location_filter": True,
"remote_filter": remote,
"salary_filter": salary_min is not None,
"job_type_filter": job_type is not None and job_type.lower() != 'all',
"duplicate_removal": True
}
}
print(f"π― Advanced Search Complete: Found {len(filtered_jobs)} matching jobs after all filters")
return response
except Exception as e:
print(f"β Advanced job search failed: {e}")
import traceback
traceback.print_exc()
return {
"success": False,
"error": str(e),
"total_found": 0,
"jobs": [],
"raw_results": "[]",
"filtering_applied": {}
}
# Convenience functions with API key parameters
def search_jobs(
query: str,
location: str = "Canada",
remote: bool = False,
level: str = "Senior",
serp_api_key: str = None,
nebius_api_key: str = None
) -> str:
"""
Main job search function with API key parameters
"""
print(f"π Main Search: '{query}' | Location: '{location}' | Remote: {remote} | Level: {level}")
if not location or location.strip() == "":
location = "Canada"
if not serp_api_key:
return "[]"
# Use LLM agent if Nebius key is provided
if nebius_api_key:
return lookup_with_llm(
query=query,
location=location,
remote=remote,
level=level,
serp_api_key=serp_api_key,
nebius_api_key=nebius_api_key
)
else:
return lookup(
query=query,
location=location,
remote_only=remote,
serp_api_key=serp_api_key
)
# Helper functions with API key parameters
def search_remote_jobs(
query: str,
level: str = "Senior",
location: str = "Canada",
serp_api_key: str = None,
nebius_api_key: str = None
) -> str:
"""Quick search for remote jobs ONLY"""
return lookup_with_llm(
query=query,
location=location,
remote=True,
level=level,
serp_api_key=serp_api_key,
nebius_api_key=nebius_api_key
)
def search_entry_level_jobs(
query: str,
location: str = "Canada",
remote: bool = False,
serp_api_key: str = None,
nebius_api_key: str = None
) -> str:
"""Quick search for entry-level positions"""
return lookup_with_llm(
query=query,
location=location,
remote=remote,
level="Junior",
serp_api_key=serp_api_key,
nebius_api_key=nebius_api_key
) |