File size: 44,882 Bytes
4eb91d1 18f9528 4eb91d1 a11ab1e 18f9528 a11ab1e 18f9528 a11ab1e 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 a11ab1e 4eb91d1 18f9528 4eb91d1 18f9528 a11ab1e 18f9528 a11ab1e 18f9528 a11ab1e 4eb91d1 a11ab1e 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 a11ab1e 4eb91d1 a11ab1e 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 a11ab1e 4eb91d1 a11ab1e 4eb91d1 a11ab1e 4eb91d1 a11ab1e 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 a11ab1e 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 4eb91d1 18f9528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
# app.py - Modern Job Search Application with Tabbed Interface
import os
import sys
import json
import gradio as gr
import threading
import pandas as pd
from typing import Any, Dict, Tuple, List
from datetime import datetime
# Add current directory to path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '.')))
from dotenv import load_dotenv
load_dotenv()
from agents.job_lookup_agent import search_jobs, advanced_job_search
from agents.resume_matcher_agent import ResumeMatcher
from utils.llm_client import LLMClient
# Constants
CURRENT_UTC_TIME = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
CURRENT_USER = "Admin"
def validate_api_keys(serp_api_key: str = None, nebius_api_key: str = None) -> Tuple[bool, str]:
"""Validate provided API keys"""
if not serp_api_key:
return False, "SerpAPI key is required for job searching"
if not nebius_api_key:
return False, "Nebius API key is required for advanced search"
return True, "API keys validated"
def process_search_with_timeout(
query: str,
include_salary: bool = True,
location: str = "Canada",
level: str = "Senior",
remote: bool = False,
timeout: int = 100,
use_llm: bool = True,
serp_api_key: str = None,
nebius_api_key: str = None
) -> Tuple[str, dict]:
"""Process job search with timeout and API key handling, returning raw + table formats."""
if not serp_api_key:
return "Please provide your SerpAPI key", {"raw": [], "table": []}
if use_llm and not nebius_api_key:
return "Please provide your Nebius API key for advanced search", {"raw": [], "table": []}
if not query or not query.strip():
return "Please enter a search query", {"raw": [], "table": []}
result_container = {"status": "Processing...", "data": {"raw": [], "table": []}}
def search_worker():
try:
search_query = query.strip()
if use_llm:
search_result = advanced_job_search(
query=search_query,
location=location,
remote=remote,
level=level,
use_llm=True,
serp_api_key=serp_api_key,
nebius_api_key=nebius_api_key
)
if not search_result["success"]:
result_container["status"] = f"Search failed: {search_result.get('error', 'Unknown error')}"
return
jobs_data = search_result["jobs"]
else:
raw_results = search_jobs(
query=search_query,
location=location,
remote=remote,
level=level,
serp_api_key=serp_api_key
)
try:
jobs_data = json.loads(raw_results)
except json.JSONDecodeError:
result_container["status"] = "Error parsing results"
return
if not jobs_data or not isinstance(jobs_data, list):
result_container["status"] = "No jobs found"
return
table_data = []
for job in jobs_data:
title = job.get("title", "N/A")
company = job.get("company_name", "N/A")
job_location = job.get("location", "N/A")
salary = job.get("salary", "N/A")
is_remote = job.get("remote", "No")
posted_date = job.get("posted_at", "N/A")
apply_link = job.get("link", "#")
# Clean apply link
if apply_link and '<a href="' in apply_link:
apply_link = apply_link.replace('<a href="', '').replace('" target="_blank">Apply</a>', '').replace('"', '')
formatted_link = (
f'<a href="{apply_link}" target="_blank" style="color: #3b82f6; text-decoration: none; font-weight: 500;">Apply β</a>'
if apply_link not in ["N/A", "#"]
else "N/A"
)
location_display = job_location
if location_display.lower() in ["anywhere", "remote"]:
location_display = "π Remote Worldwide"
elif "remote" in location_display.lower():
location_display = f"π {location_display}"
remote_status = "Yes" if str(is_remote).lower() in ["yes", "true", "remote", "1"] or "remote" in job_location.lower() else "No"
row = [
title,
company,
location_display,
salary if include_salary else "",
remote_status,
posted_date,
formatted_link
]
if not include_salary:
row.pop(3) # Remove salary column
table_data.append(row)
result_container["status"] = f"Found {len(table_data)} jobs using {'advanced search' if use_llm else 'basic search'}"
result_container["data"] = {
"raw": jobs_data,
"table": table_data
}
except Exception as e:
result_container["status"] = f"Search failed: {str(e)}"
result_container["data"] = {"raw": [], "table": []}
# Run search in thread with timeout
search_thread = threading.Thread(target=search_worker)
search_thread.daemon = True
search_thread.start()
search_thread.join(timeout)
if search_thread.is_alive():
return "Search timed out. Please try again with a more specific query.", {"raw": [], "table": []}
return result_container["status"], result_container["data"]
def normalize_data(data, include_salary=True):
import pandas as pd
if not isinstance(data, pd.DataFrame):
df = pd.DataFrame(data)
else:
df = data.copy()
field_map = {
"title": "Job Title",
"company_name": "Company",
"location": "Location",
"remote": "Remote",
"posted_at": "Posted",
"link": "Apply Link"
}
if include_salary:
field_map["salary"] = "Salary"
# Rename only if the column exists
cols_to_rename = {k: v for k, v in field_map.items() if k in df.columns}
df = df.rename(columns=cols_to_rename)
df = df[list(cols_to_rename.values())]
return df
def export_csv(dataframe, include_salary=True):
if not dataframe:
return gr.update(visible=False)
try:
df = normalize_data(dataframe, include_salary)
# Clean HTML from Apply Link column if present
if 'Apply Link' in df.columns:
df['Apply Link'] = (
df['Apply Link']
.astype(str)
.str.replace(r'<.*?>', '', regex=True)
.str.replace('Apply β', '')
.str.strip()
)
filename = f"job_search_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(filename, index=False, encoding='utf-8')
return gr.update(value=filename, visible=True)
except Exception as e:
print(f"CSV export error: {e}")
return gr.update(visible=False)
def export_json(dataframe, include_salary=True):
"""Export DataFrame to JSON"""
if not dataframe:
return gr.update(visible=False)
try:
df = normalize_data(dataframe, include_salary)
# Clean Apply Link column for JSON (remove HTML)
if 'Apply Link' in df.columns:
df['Apply Link'] = df['Apply Link'].astype(str).str.replace(r'<.*?>', '', regex=True).str.replace('Apply β', '').str.strip()
# Generate filename with timestamp
filename = f"job_search_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
df.to_json(filename, orient='records', indent=2)
return gr.update(value=filename, visible=True)
except Exception as e:
print(f"JSON export error: {e}")
return gr.update(visible=False)
def analyze_resume_and_match(
resume_file,
job_text: str,
nebius_key: str,
progress=gr.Progress()
) -> Tuple[float, float, List[List[str]], str, str]:
try:
if not nebius_key:
return (
0,
0,
[],
"Error: Please provide your Nebius API key",
"Please configure your API key first"
)
if not resume_file or not job_text.strip():
return (
0,
0,
[],
"Error: Please provide both resume file and job description",
"Upload your resume and paste the job description text"
)
try:
progress(0.2, desc="Reading resume...")
print(f"Resume file type: {type(resume_file)}")
print(f"Resume file name: {resume_file.name}")
# Read the PDF file using PyMuPDF (fitz)
try:
import fitz
doc = fitz.open(resume_file.name)
resume_text = ""
for page in doc:
resume_text += page.get_text()
doc.close()
except Exception as pdf_error:
print(f"Error reading PDF: {pdf_error}")
return (
0,
0,
[],
f"Error reading PDF: {str(pdf_error)}",
"Please ensure your resume is a valid PDF file"
)
progress(0.2, desc="Initializing matcher...")
# Initialize LLM client correctly with API key
try:
llm_client = LLMClient(api_key=nebius_key)
print("LLM client initialized successfully")
except Exception as llm_error:
print(f"Error initializing LLM client: {llm_error}")
return (
0,
0,
[],
f"Error initializing AI client: {str(llm_error)}",
"Please check your API key and try again"
)
matcher = ResumeMatcher(
llm_client=llm_client,
current_user=CURRENT_USER,
current_time=CURRENT_UTC_TIME
)
progress(0.4, desc="Analyzing resume...")
resume_data = matcher.analyze_resume(resume_text)
progress(0.8, desc="Preparing job data...")
job_data = matcher.parse_job_from_text(job_text)
progress(0.9, desc="Calculating match...")
result = matcher.calculate_match(resume_data, job_data)
# Convert skills analysis to table format
skills_table = [
[
skill["skill"],
skill["status"],
skill["found_in_resume"],
skill["relevance_score"]
]
for skill in result.get("skills_analysis", [])
]
progress(1.0, desc="Done!")
return (
float(result.get("match_score", 0)),
float(result.get("confidence_score", 0)),
skills_table,
result.get("detailed_analysis", "No detailed analysis available"),
"\n".join(result.get("improvement_suggestions", ["No suggestions available"])),
resume_data,
job_data
)
except Exception as e:
print(f"Error in resume analysis: {e}")
return (
0,
0,
[],
f"Error processing resume: {str(e)}",
"Please try again with a different PDF file"
)
except Exception as e:
print(f"Error in match analysis: {e}")
return (
0,
0,
[],
f"Analysis failed: {str(e)}",
"An error occurred during analysis"
)
def generate_cover_letter_fn(resume_json, job_json, api_key):
try:
llm_client = LLMClient(api_key=api_key)
matcher = ResumeMatcher(
llm_client=llm_client,
current_user=CURRENT_USER,
current_time=CURRENT_UTC_TIME
)
return matcher.generate_cover_letter(resume_json, job_json)
except Exception as e:
return f"β Error generating cover letter: {str(e)}"
def create_interface():
"""Create modern Gradio interface with tabbed layout"""
# Load external CSS
with open("static/styles.css", "r") as f:
css = f.read()
theme = gr.themes.Default(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
)
def clear_search_tab():
"""Clear all components in the Search & Results tab"""
return [
"", # search_input
"Advanced Search (AI-Enhanced)", # search_method
"Senior", # exp_level
"Canada", # location
True, # show_salary
False, # remote_only
"", # status_display
None, # results_table
gr.update(visible=False), # export_section
gr.update(value=None, visible=False), # csv_file
gr.update(value=None, visible=False), # json_file
None # raw_data_state
]
def clear_resume_matcher_tab():
"""Clear all components in the Resume Matcher tab"""
return [
None, # resume_file
"", # job_textbox
0, # match_score
0, # confidence_score
None, # skills_analysis
"", # analysis_details
"", # suggestions
None, # resume_json_state
None, # job_json_state
gr.update(visible=False), # generate_cover_btn
gr.update(visible=False, value="") # cover_letter_output
]
with gr.Blocks(title="Career Compass AI", css=css, theme=theme) as interface:
# Full width header
with gr.Group(elem_classes=["header-section"]):
with gr.Group(elem_classes=["header-content"]):
gr.Markdown("""
<div class='app-header'>
<h1>π§ Career Compass AI</h1>
<p class='app-description'>Your all-in-one AI-powered career assistant for job search, resume optimization, and professional document generation.</p>
<div class='header-features'>
<span>π Smart Job Search</span>
<span>π Resume Analysis</span>
<span>βοΈ Cover Letter Generator</span>
<span>π― Skills Matcher</span>
</div>
</div>
""")
# Main Tabbed Interface
with gr.Tabs(elem_classes=["fixed-width-container", "main-content"]) as tabs:
# Tab 1: API Configuration
with gr.TabItem("π API Configuration", elem_classes=["tab-content"]):
with gr.Group(elem_classes=["api-config-section"]):
gr.Markdown("### API Keys Setup")
gr.Markdown("""
This tool requires two API keys to function properly:
**π [SerpAPI](https://serpapi.com)** - For job searching (Required for all searches)
- Sign up for free account and get API key
- Used for accessing job search data from multiple job boards
**π€ [Nebius](https://nebius.ai)** - For AI-powered filtering (Required for Advanced Search)
- Advanced AI model for intelligent job parsing and filtering
- Provides better accuracy in matching requirements
**π Security Note:** Your API keys are only stored temporarily in memory during your session and are never saved to disk.
""")
with gr.Row():
serp_api_key = gr.Textbox(
label="SerpAPI Key",
placeholder="Enter your SerpAPI key here...",
type="password",
value=os.environ.get("SERP_API_KEY", ""),
info="Required for all job searches",
elem_classes=["api-input"]
)
nebius_api_key = gr.Textbox(
label="Nebius API Key",
placeholder="Enter your Nebius API key here...",
type="password",
value=os.environ.get("NEBIUS_API_KEY", ""),
info="Required for AI-enhanced searches",
elem_classes=["api-input"]
)
# API Status Display
api_status = gr.Markdown("β οΈ Please enter your API keys to start searching", elem_classes=["api-status"])
# Tab 2: Search & Results
with gr.TabItem("π Search & Results", elem_classes=["tab-content"]):
with gr.Row():
with gr.Column(scale=1):
# Search Parameters Section
with gr.Group(elem_classes=["search-params-section"]):
gr.Markdown("### Search Parameters")
search_input = gr.Textbox(
label="Job Title/Keywords",
placeholder="e.g., Python Developer, Full Stack Engineer, DevOps",
lines=2,
info="Enter job title, skills, or keywords",
elem_classes=["search-input"]
)
# Method selection
with gr.Group(elem_classes=["method-radio"]):
gr.Markdown("** Search Method Selection**")
search_method = gr.Radio(
choices=["Advanced Search (AI-Enhanced)", "Basic Search (Fast)"],
value="Advanced Search (AI-Enhanced)",
label="Choose Search Method",
info="β’ Advanced: Uses AI for intelligent parsing and better filtering (30-60s)\nβ’ Basic: Fast search with standard filtering (10-30s)",
show_label=True
)
with gr.Row():
exp_level = gr.Dropdown(
choices=["Junior", "Mid-Level", "Senior", "Lead", "Principal"],
value="Senior",
label="Experience Level",
info="Filter by experience level"
)
location = gr.Dropdown(
choices=[
"Canada",
"United States",
"United Kingdom",
"Australia",
"Germany",
"Netherlands",
"Remote Worldwide"
],
value="Canada",
label="Location",
info="Preferred job location"
)
with gr.Row():
show_salary = gr.Checkbox(
label="Include Salary Info",
value=True,
info="Show salary information when available"
)
remote_only = gr.Checkbox(
label="Remote Positions Only",
value=False,
info="Filter ONLY for remote work opportunities"
)
with gr.Row():
search_button = gr.Button(
"π Search Jobs",
variant="primary",
size="lg",
elem_classes=["search-button"]
)
clear_all_btn = gr.Button(
"ποΈ Clear All",
variant="secondary",
size="lg",
elem_classes=["clear-button"]
)
# Status display
status_display = gr.Textbox(
label="Search Status",
interactive=False,
info="Current search status and results count",
elem_classes=["status-display"]
)
# Quick Examples Section
with gr.Group(elem_classes=["example-buttons"]):
gr.Markdown("### π Quick Examples")
gr.Markdown("* Click any example to populate the search form*")
with gr.Row():
example_btn1 = gr.Button("π Python Developer (Remote)", size="sm", variant="secondary", elem_classes=["example-button"])
example_btn2 = gr.Button("βοΈ Full Stack Engineer", size="sm", variant="secondary", elem_classes=["example-button"])
example_btn3 = gr.Button("π§ DevOps Engineer (Senior)", size="sm", variant="secondary", elem_classes=["example-button"])
example_btn4 = gr.Button("β‘ React Developer (Entry)", size="sm", variant="secondary", elem_classes=["example-button"])
# Results section
with gr.Group(elem_classes=["results-section"]):
gr.Markdown("### Search Results")
results_table = gr.DataFrame(
label="Job Listings",
wrap=True,
interactive=False,
elem_classes=["results-table"],
headers=["Job Title", "Company", "Location", "Salary", "Remote", "Posted", "Apply"],
datatype=["str", "str", "str", "str", "str", "str", "html"]
)
raw_data_state = gr.State()
# Export Section (Initially Hidden)
with gr.Group(elem_classes=["export-section"], visible=False) as export_section:
gr.Markdown("### Export Results")
with gr.Row():
export_csv_btn = gr.Button("π Export as CSV", elem_classes=["export-button"])
export_json_btn = gr.Button("π Export as JSON", elem_classes=["export-button", "json"])
with gr.Row():
csv_file = gr.File(interactive=False, visible=False)
json_file = gr.File(interactive=False, visible=False)
# Tab 3: Resume Matcher
with gr.TabItem("π Resume Matcher & Cover Letter Generation", elem_classes=["tab-content"]):
resume_json_state = gr.State()
job_json_state = gr.State()
with gr.Group(elem_classes=["resume-matcher-section"]):
gr.Markdown("### π Resume Analysis & Job Matching")
gr.Markdown(f""" Upload your resume and paste a job posting URL to get a detailed match analysis.
Current User: {CURRENT_USER}
Analysis Time (UTC): {CURRENT_UTC_TIME}""")
with gr.Row():
with gr.Column(scale=1):
resume_file = gr.File(
label="Upload Resume (PDF)",
file_types=[".pdf"],
elem_classes=["resume-upload"]
)
with gr.Column(scale=1):
job_textbox = gr.Textbox(
label="Paste Job Description Here",
placeholder="Paste full job description text...",
lines=15,
elem_classes=["manual-job-description"]
)
with gr.Row():
analyze_btn = gr.Button(
"π― Analyze Match",
variant="primary",
elem_classes=["analyze-button"]
)
clear_matcher_btn = gr.Button(
"ποΈ Clear All",
variant="secondary",
elem_classes=["clear-button"]
)
with gr.Group(elem_classes=["results-group"]):
with gr.Row():
match_score = gr.Number(
label="Match Score",
value=0,
minimum=0,
maximum=100,
interactive=False,
elem_classes=["score-display"]
)
confidence_score = gr.Number(
label="Confidence Score",
value=0,
minimum=0,
maximum=100,
interactive=False,
elem_classes=["score-display"]
)
skills_analysis = gr.DataFrame(
headers=["Required Skill", "Status", "Found in Resume", "Relevance Score"],
label="Skills Analysis",
interactive=False,
elem_classes=["results-table"]
)
with gr.Accordion("Detailed Analysis", open=False):
analysis_details = gr.Markdown(
elem_classes=["analysis-details"]
)
with gr.Accordion("Improvement Suggestions", open=False):
suggestions = gr.Markdown(
elem_classes=["improvement-suggestions"]
)
# Cover Letter Section (Initially Hidden)
with gr.Group(elem_classes=["cover-letter-section"]) as cover_letter_section:
gr.Markdown("### Generate Cover Letter")
generate_cover_btn = gr.Button(
"βοΈ Generate Cover Letter",
visible=False,
elem_classes=["cover-letter-button"]
)
cover_letter_output = gr.Textbox(
lines=20,
label="Generated Cover Letter",
interactive=False,
visible=False,
elem_classes=["cover-letter-output"]
)
# Connect the analyze button
analyze_btn.click(
fn=analyze_resume_and_match,
inputs=[
resume_file,
job_textbox,
nebius_api_key
],
outputs=[
match_score,
confidence_score,
skills_analysis,
analysis_details,
suggestions,
resume_json_state,
job_json_state
],
show_progress=True
).then(
# Show cover letter section when data is available
fn=lambda r, j: (gr.update(visible=True), gr.update(visible=True)) if r is not None and j is not None else (gr.update(visible=False), gr.update(visible=False)),
inputs=[resume_json_state, job_json_state],
outputs=[generate_cover_btn, cover_letter_output]
)
# generate cover letter button connection
generate_cover_btn.click(
fn=generate_cover_letter_fn,
inputs=[resume_json_state, job_json_state, nebius_api_key],
outputs=[cover_letter_output]
)
# Connect the clear button
clear_matcher_btn.click(
fn=clear_resume_matcher_tab,
outputs=[
resume_file,
job_textbox,
match_score,
confidence_score,
skills_analysis,
analysis_details,
suggestions,
resume_json_state,
job_json_state,
generate_cover_btn,
cover_letter_output
]
)
# Tab 4: Help & Documentation
with gr.TabItem("π Help & Documentation", elem_classes=["tab-content"]):
with gr.Group(elem_classes=["help-header"]):
gr.Markdown(f"""
# π Application Documentation
**Latest Update:** {CURRENT_UTC_TIME}
**By:** {CURRENT_USER}
**Version:** 2.0.0
""")
with gr.Tabs() as doc_tabs:
# Quick Start Guide
with gr.TabItem("π Quick Start"):
with gr.Accordion("Getting Started", open=True):
gr.Markdown("""
### 1. Configure API Keys
- Enter your SerpAPI and Nebius API keys in the API Configuration tab
- Keys are required for job searching and AI features
### 2. Search for Jobs
- Use the Search & Results tab
- Enter job title or keywords
- Choose search method (Advanced or Basic)
- Set location and experience preferences
### 3. Analyze Your Resume
- Use the Resume Matcher tab
- Upload your PDF resume
- Paste job description
- Get instant analysis and scores
""")
# Feature Details
with gr.TabItem("β¨ Features"):
with gr.Accordion("Job Search", open=True):
gr.Markdown("""
### π€ Advanced Search (AI-Enhanced)
- Uses LLM for intelligent parsing
- Higher precision matching
- 30-60 seconds processing
### β‘ Basic Search
- Direct API search
- 10-30 seconds processing
- Best for quick lookups
""")
with gr.Accordion("Resume Matcher"):
gr.Markdown("""
### π― Analysis Features
- Match & Confidence Scores
- Skills Analysis Table
- Detailed Breakdown
- Improvement Suggestions
### βοΈ Cover Letter
- AI-Generated
- Context-Aware
- Customizable
""")
# Best Practices
with gr.TabItem("π‘ Tips & Tricks"):
with gr.Accordion("Search Optimization", open=True):
gr.Markdown("""
### Keywords
- Use specific skills (React, Python, AWS)
- Include job levels
- Combine role types
### Location Strategy
- Remote Worldwide
- Specific Countries
- Hybrid Options
""")
with gr.Accordion("Resume Matcher Tips"):
gr.Markdown("""
- Upload clear PDF resumes
- Review skill analysis
- Use improvement suggestions
- Generate cover letter after good match
""")
# Security & Privacy
with gr.TabItem("π Security"):
with gr.Accordion("Data Protection", open=True):
gr.Markdown("""
### API Keys
- Memory-only storage
- HTTPS encryption
- Session-based
### User Data
- No persistent storage
- Local processing
- No tracking
""")
# Troubleshooting
with gr.TabItem("π§ Help"):
with gr.Accordion("Common Issues", open=True):
gr.Markdown("""
### Search Problems
- No Results β Try broader terms
- Timeout β Use specific queries
- API Errors β Check keys
### Resume Analysis
- PDF Errors β Check format
- Low Scores β Review suggestions
- Analysis Fails β Check input format
""")
with gr.Accordion("Support Links"):
gr.Markdown("""
- [SerpAPI Documentation](https://serpapi.com/search-api)
- [Nebius AI Platform](https://nebius.ai)
- [HuggingFace Space](https://huggingface.co/spaces/Agents-MCP-Hackathon/job-hunting-ai/tree/main)
""")
with gr.Group(elem_classes=["help-footer"]):
gr.Markdown("""
---
*Need more help? Check our [documentation repository](https://huggingface.co/spaces/Agents-MCP-Hackathon/job-hunting-ai/blob/main/README.md) or [reach out to me](https://huggingface.co/mananshah296).*
""")
# Search functionality
def handle_search(query, method, salary, loc, level, remote, serp_key, nebius_key):
if not serp_key:
return "Please enter your SerpAPI key in the API Configuration tab", gr.DataFrame(value=[]), gr.Group.update(visible=False)
if method == "Advanced Search (AI-Enhanced)" and not nebius_key:
return "Please enter your Nebius API key for advanced search", gr.DataFrame(value=[]), gr.Group.update(visible=False)
if not query or not query.strip():
return "Please enter a search query", gr.DataFrame(value=[]), gr.Group.update(visible=False)
# Determine which method to use
use_advanced = method == "Advanced Search (AI-Enhanced)"
# Show what we're searching for
search_info = f"Searching for: '{query}' | Location: {loc} | Level: {level} | Remote Only: {'Yes' if remote else 'No'}"
print(search_info)
# Perform search with direct API key passing
status, result = process_search_with_timeout(
query=query,
include_salary=salary,
location=loc,
level=level,
remote=remote,
timeout=60 if use_advanced else 30,
use_llm=use_advanced,
serp_api_key=serp_key,
nebius_api_key=nebius_key
)
table_data = result.get("table", [])
raw_data = result.get("raw", [])
if salary:
headers = ["Job Title", "Company", "Location", "Salary", "Remote", "Posted", "Apply"]
column_types = ["str", "str", "str", "str", "str", "str", "html"]
else:
headers = ["Job Title", "Company", "Location", "Remote", "Posted", "Apply"]
column_types = ["str", "str", "str", "str", "str", "html"]
if table_data:
return status, gr.DataFrame(
value=table_data,
headers=headers,
datatype=column_types
), gr.update(visible=True), raw_data
else:
return status, gr.DataFrame(
value=[],
headers=headers,
datatype=column_types
), gr.update(visible=False), []
# Connect search button
search_button.click(
fn=handle_search,
inputs=[
search_input,
search_method,
show_salary,
location,
exp_level,
remote_only,
serp_api_key,
nebius_api_key
],
outputs=[status_display, results_table, export_section, raw_data_state],
show_progress=True
)
# Connect the clear button
clear_all_btn.click(
fn=clear_search_tab,
outputs=[
search_input,
search_method,
exp_level,
location,
show_salary,
remote_only,
status_display,
results_table,
export_section,
csv_file,
json_file,
raw_data_state
]
)
# Example button functions
def set_example_1():
return "Python Developer", "Advanced Search (AI-Enhanced)", True, "Canada", "Senior", True
def set_example_2():
return "Full Stack Engineer", "Basic Search (Fast)", True, "United States", "Mid-Level", False
def set_example_3():
return "DevOps Engineer", "Advanced Search (AI-Enhanced)", False, "Remote Worldwide", "Senior", True
def set_example_4():
return "React Developer", "Basic Search (Fast)", True, "United Kingdom", "Junior", False
# Connect example buttons
example_btn1.click(
fn=set_example_1,
outputs=[search_input, search_method, show_salary, location, exp_level, remote_only]
)
example_btn2.click(
fn=set_example_2,
outputs=[search_input, search_method, show_salary, location, exp_level, remote_only]
)
example_btn3.click(
fn=set_example_3,
outputs=[search_input, search_method, show_salary, location, exp_level, remote_only]
)
example_btn4.click(
fn=set_example_4,
outputs=[search_input, search_method, show_salary, location, exp_level, remote_only]
)
# Export functionality
export_csv_btn.click(
fn=lambda df, salary: export_csv(df, salary),
inputs=[raw_data_state, show_salary],
outputs=csv_file
)
export_json_btn.click(
fn=lambda df, salary: export_json(df, salary),
inputs=[raw_data_state, show_salary],
outputs=json_file
)
# API key validation function
def validate_keys(serp_key, nebius_key):
if not serp_key and not nebius_key:
return "β οΈ Please enter both API keys to get started"
elif not serp_key:
return "β οΈ SerpAPI key is required for all searches"
elif not nebius_key:
return "β οΈ Nebius API key is required for advanced search"
else:
return "β
API keys configured and ready to search"
# Connect key validation
for key in [serp_api_key, nebius_api_key]:
key.change(
fn=validate_keys,
inputs=[serp_api_key, nebius_api_key],
outputs=api_status
)
# Trigger initial validation when interface loads
interface.load(
fn=validate_keys,
inputs=[serp_api_key, nebius_api_key],
outputs=api_status
)
return interface
# Main execution
if __name__ == "__main__":
print("Starting Modern Job Search Application...")
print(f"Current time: {CURRENT_UTC_TIME}")
# Create static directory if it doesn't exist
os.makedirs("static", exist_ok=True)
# Create CSS file if it doesn't exist
if not os.path.exists("static/styles.css"):
print("Creating CSS file...")
# You would need to create the CSS file separately or copy it from the previous artifact
with open("static/styles.css", "w") as f:
f.write("/* CSS file - please copy from the CSS artifact provided */")
try:
# Create and launch interface
demo = create_interface()
# Launch with correct parameters
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
)
except Exception as e:
print(f"Failed to start application: {str(e)}")
import traceback
traceback.print_exc() |