Spaces:
Runtime error
Runtime error
LPX
commited on
Commit
·
1a8be6b
1
Parent(s):
179d07c
feat(UX): add image augmentation option for prediction
Browse files- add "augment" parameter to functions-* predict_image_with_html
- add "augment_image" function
- add extra Gradio Accordion checkbox for image augmentation
app.py
CHANGED
|
@@ -200,12 +200,15 @@ def generate_results_html(results):
|
|
| 200 |
"""
|
| 201 |
return html_content
|
| 202 |
|
| 203 |
-
def predict_image_with_html(img, confidence_threshold):
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
html_content = generate_results_html(results)
|
| 206 |
return img_pil, html_content
|
| 207 |
-
|
| 208 |
-
# Define the Gradio interface
|
| 209 |
with gr.Blocks() as iface:
|
| 210 |
gr.Markdown("# AI Generated Image / Deepfake Detection Models Evaluation")
|
| 211 |
|
|
@@ -214,7 +217,8 @@ with gr.Blocks() as iface:
|
|
| 214 |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
|
| 215 |
with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
|
| 216 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 217 |
-
|
|
|
|
| 218 |
predict_button = gr.Button("Predict")
|
| 219 |
with gr.Column(scale=2):
|
| 220 |
with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
|
|
@@ -224,9 +228,6 @@ with gr.Blocks() as iface:
|
|
| 224 |
results_html = gr.HTML(label="Model Predictions")
|
| 225 |
outputs = [image_output, results_html]
|
| 226 |
|
| 227 |
-
# gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
predict_button.click(
|
| 231 |
fn=predict_image_with_html,
|
| 232 |
inputs=inputs,
|
|
|
|
| 200 |
"""
|
| 201 |
return html_content
|
| 202 |
|
| 203 |
+
def predict_image_with_html(img, confidence_threshold, augment):
|
| 204 |
+
if augment:
|
| 205 |
+
img_pil, _ = augment_image(img)
|
| 206 |
+
else:
|
| 207 |
+
img_pil = img
|
| 208 |
+
img_pil, results = predict_image(img_pil, confidence_threshold)
|
| 209 |
html_content = generate_results_html(results)
|
| 210 |
return img_pil, html_content
|
| 211 |
+
|
|
|
|
| 212 |
with gr.Blocks() as iface:
|
| 213 |
gr.Markdown("# AI Generated Image / Deepfake Detection Models Evaluation")
|
| 214 |
|
|
|
|
| 217 |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil')
|
| 218 |
with gr.Accordion("Settings", open=False, elem_id="settings_accordion"):
|
| 219 |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold")
|
| 220 |
+
augment_checkbox = gr.Checkbox(label="Augment Image", value=False)
|
| 221 |
+
inputs = [image_input, confidence_slider, augment_checkbox]
|
| 222 |
predict_button = gr.Button("Predict")
|
| 223 |
with gr.Column(scale=2):
|
| 224 |
with gr.Accordion("Project OpenSight - Model Evaluations & Playground", open=False, elem_id="project_accordion"):
|
|
|
|
| 228 |
results_html = gr.HTML(label="Model Predictions")
|
| 229 |
outputs = [image_output, results_html]
|
| 230 |
|
|
|
|
|
|
|
|
|
|
| 231 |
predict_button.click(
|
| 232 |
fn=predict_image_with_html,
|
| 233 |
inputs=inputs,
|