Spaces:
Runtime error
♻️ refactor(app): code cleanup
Browse files- removed unused import: warnings
- added logging configuration
-【docs】modified logging level
-【refactor】renamed old logging config to current logging module
- optimized importance of models by introducing model hook configuration modes
-【docs】map classes of various models
-【feat】move and refactor models into reusable function
- modified logic containment
- reorganized and refactored prediction logic
- moved all augmentation related function to util
- clarified all parameters to be consistent
-【refactor】modified function name consistent
▪️️ feat(app): new model prediction logic with gpu decorator
-【refactor】added model index to output [[model id, model name, class a confidence, class b confidence, label] recommended output]
---·
+ refactor(file management): code cleanup
- remove previous unused paths
- moved function into utils
- app.py +72 -240
- utils/utils.py +25 -0
|
@@ -5,284 +5,116 @@ from torchvision import transforms
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import numpy as np
|
| 8 |
-
# from utils.goat import call_inference / announcement soon
|
| 9 |
import io
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Suppress warnings
|
| 13 |
-
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
| 14 |
|
| 15 |
# Ensure using GPU if available
|
| 16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 17 |
|
| 18 |
-
# Load the first model and processor
|
| 19 |
-
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True)
|
| 20 |
-
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy")
|
| 21 |
-
model_1 = model_1.to(device)
|
| 22 |
-
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
model_3
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
# Load
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
clf_5b = pipeline("image-classification", model=model_5b_path, device=device)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
class_names_2 = ['AI Image', 'Real Image']
|
| 45 |
-
labels_3 = ['AI', 'Real']
|
| 46 |
-
labels_4 = ['AI', 'Real']
|
| 47 |
-
class_names_5 = ['Realism', 'Deepfake']
|
| 48 |
-
class_names_5b = ['Real', 'Deepfake']
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return e / e.sum()
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
])
|
| 59 |
-
|
| 60 |
-
# Example augmentation: rotation
|
| 61 |
-
transform_rotate = transforms.Compose([
|
| 62 |
-
transforms.RandomRotation(degrees=(90, 90)) # Rotate the image by 90 degrees
|
| 63 |
-
])
|
| 64 |
-
|
| 65 |
-
augmented_img_flip = transform_flip(img_pil)
|
| 66 |
-
augmented_img_rotate = transform_rotate(img_pil)
|
| 67 |
-
|
| 68 |
-
return augmented_img_flip, augmented_img_rotate
|
| 69 |
|
| 70 |
-
|
| 71 |
-
# img_byte_arr = io.BytesIO()
|
| 72 |
-
# img_pil.save(img_byte_arr, format='PNG')
|
| 73 |
-
# img_byte_arr = img_byte_arr.getvalue()
|
| 74 |
-
# return img_byte_arr
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
@spaces.GPU(duration=10)
|
| 83 |
def predict_image(img, confidence_threshold):
|
| 84 |
-
# Ensure the image is a PIL Image
|
| 85 |
if not isinstance(img, Image.Image):
|
| 86 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
| 87 |
-
|
| 88 |
-
# Convert the image to RGB if not already
|
| 89 |
if img.mode != 'RGB':
|
| 90 |
img_pil = img.convert('RGB')
|
| 91 |
else:
|
| 92 |
img_pil = img
|
| 93 |
-
|
| 94 |
-
# Resize the image
|
| 95 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
| 96 |
-
# Size 224 for vits models
|
| 97 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
| 98 |
-
|
| 99 |
-
# Predict using the first model
|
| 100 |
-
try:
|
| 101 |
-
prediction_1 = clf_1(img_pil)
|
| 102 |
-
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
| 103 |
-
result_1output = [1, 'SwinV2-base', result_1['real'], result_1['artificial']]
|
| 104 |
-
print(result_1output)
|
| 105 |
-
# Ensure the result dictionary contains all class names
|
| 106 |
-
for class_name in class_names_1:
|
| 107 |
-
if class_name not in result_1:
|
| 108 |
-
result_1[class_name] = 0.0
|
| 109 |
-
# Check if either class meets the confidence threshold
|
| 110 |
-
if result_1['artificial'] >= confidence_threshold:
|
| 111 |
-
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}"
|
| 112 |
-
result_1output += ['AI']
|
| 113 |
-
elif result_1['real'] >= confidence_threshold:
|
| 114 |
-
label_1 = f"Real, Confidence: {result_1['real']:.4f}"
|
| 115 |
-
result_1output += ['REAL']
|
| 116 |
-
else:
|
| 117 |
-
label_1 = "Uncertain Classification"
|
| 118 |
-
result_1output += ['UNCERTAIN']
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
result_2 = {pred['label']: pred['score'] for pred in prediction_2}
|
| 127 |
-
result_2output = [2, 'ViT-base Classifer', result_2['Real Image'], result_2['AI Image']]
|
| 128 |
-
print(result_2output)
|
| 129 |
-
# Ensure the result dictionary contains all class names
|
| 130 |
-
for class_name in class_names_2:
|
| 131 |
-
if class_name not in result_2:
|
| 132 |
-
result_2[class_name] = 0.0
|
| 133 |
-
# Check if either class meets the confidence threshold
|
| 134 |
-
if result_2['AI Image'] >= confidence_threshold:
|
| 135 |
-
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}"
|
| 136 |
-
result_2output += ['AI']
|
| 137 |
-
elif result_2['Real Image'] >= confidence_threshold:
|
| 138 |
-
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}"
|
| 139 |
-
result_2output += ['REAL']
|
| 140 |
-
else:
|
| 141 |
-
label_2 = "Uncertain Classification"
|
| 142 |
-
result_2output += ['UNCERTAIN']
|
| 143 |
-
except Exception as e:
|
| 144 |
-
label_2 = f"Error: {str(e)}"
|
| 145 |
-
|
| 146 |
-
# Predict using the third model with softmax
|
| 147 |
-
try:
|
| 148 |
-
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device)
|
| 149 |
-
with torch.no_grad():
|
| 150 |
-
outputs_3 = model_3(**inputs_3)
|
| 151 |
-
logits_3 = outputs_3.logits
|
| 152 |
-
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
| 153 |
-
result_3 = {
|
| 154 |
-
labels_3[1]: float(probabilities_3[1]), # Real
|
| 155 |
-
labels_3[0]: float(probabilities_3[0]) # AI
|
| 156 |
-
}
|
| 157 |
-
result_3output = [3, 'SDXL-Trained', float(probabilities_3[1]), float(probabilities_3[0])]
|
| 158 |
-
print(result_3output)
|
| 159 |
-
# Ensure the result dictionary contains all class names
|
| 160 |
-
for class_name in labels_3:
|
| 161 |
-
if class_name not in result_3:
|
| 162 |
-
result_3[class_name] = 0.0
|
| 163 |
-
# Check if either class meets the confidence threshold
|
| 164 |
-
if result_3['AI'] >= confidence_threshold:
|
| 165 |
-
label_3 = f"AI, Confidence: {result_3['AI']:.4f}"
|
| 166 |
-
result_3output += ['AI']
|
| 167 |
-
elif result_3['Real'] >= confidence_threshold:
|
| 168 |
-
label_3 = f"Real, Confidence: {result_3['Real']:.4f}"
|
| 169 |
-
result_3output += ['REAL']
|
| 170 |
-
else:
|
| 171 |
-
label_3 = "Uncertain Classification"
|
| 172 |
-
result_3output += ['UNCERTAIN']
|
| 173 |
-
except Exception as e:
|
| 174 |
-
label_3 = f"Error: {str(e)}"
|
| 175 |
-
|
| 176 |
-
# Predict using the fourth model with softmax
|
| 177 |
-
try:
|
| 178 |
-
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device)
|
| 179 |
-
with torch.no_grad():
|
| 180 |
-
outputs_4 = model_4(**inputs_4)
|
| 181 |
-
logits_4 = outputs_4.logits
|
| 182 |
-
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
| 183 |
-
result_4 = {
|
| 184 |
-
labels_4[1]: float(probabilities_4[1]), # Real
|
| 185 |
-
labels_4[0]: float(probabilities_4[0]) # AI
|
| 186 |
-
}
|
| 187 |
-
result_4output = [4, 'SDXL + FLUX', float(probabilities_4[1]), float(probabilities_4[0])]
|
| 188 |
-
print(result_4)
|
| 189 |
-
# Ensure the result dictionary contains all class names
|
| 190 |
-
for class_name in labels_4:
|
| 191 |
-
if class_name not in result_4:
|
| 192 |
-
result_4[class_name] = 0.0
|
| 193 |
-
# Check if either class meets the confidence threshold
|
| 194 |
-
if result_4['AI'] >= confidence_threshold:
|
| 195 |
-
label_4 = f"AI, Confidence: {result_4['AI']:.4f}"
|
| 196 |
-
result_4output += ['AI']
|
| 197 |
-
elif result_4['Real'] >= confidence_threshold:
|
| 198 |
-
label_4 = f"Real, Confidence: {result_4['Real']:.4f}"
|
| 199 |
-
result_4output += ['REAL']
|
| 200 |
-
else:
|
| 201 |
-
label_4 = "Uncertain Classification"
|
| 202 |
-
result_4output += ['UNCERTAIN']
|
| 203 |
-
except Exception as e:
|
| 204 |
-
label_4 = f"Error: {str(e)}"
|
| 205 |
-
|
| 206 |
-
try:
|
| 207 |
-
prediction_5 = clf_5(img_pilvits)
|
| 208 |
-
result_5 = {pred['label']: pred['score'] for pred in prediction_5}
|
| 209 |
-
result_5output = [5, 'ViT-base Newcomer', result_5['Realism'], result_5['Deepfake']]
|
| 210 |
-
|
| 211 |
-
# Ensure the result dictionary contains all class names
|
| 212 |
-
for class_name in class_names_5:
|
| 213 |
-
if class_name not in result_5:
|
| 214 |
-
result_5[class_name] = 0.0
|
| 215 |
-
# Check if either class meets the confidence threshold
|
| 216 |
-
if result_5['Deepfake'] >= confidence_threshold:
|
| 217 |
-
label_5 = f"AI, Confidence: {result_5['Deepfake']:.4f}"
|
| 218 |
-
result_5output += ['AI']
|
| 219 |
-
elif result_5['Real Image'] >= confidence_threshold:
|
| 220 |
-
label_5 = f"Real, Confidence: {result_5['Realism']:.4f}"
|
| 221 |
-
result_5output += ['REAL']
|
| 222 |
-
else:
|
| 223 |
-
label_5 = "Uncertain Classification"
|
| 224 |
-
result_5output += ['UNCERTAIN']
|
| 225 |
-
except Exception as e:
|
| 226 |
-
label_5 = f"Error: {str(e)}"
|
| 227 |
-
|
| 228 |
-
print(result_5output)
|
| 229 |
-
|
| 230 |
-
try:
|
| 231 |
-
prediction_5b = clf_5b(img_pilvits)
|
| 232 |
-
result_5b = {pred['label']: pred['score'] for pred in prediction_5b}
|
| 233 |
-
result_5boutput = [6, 'ViT-base Newcomer', result_5b['Real'], result_5b['Deepfake']]
|
| 234 |
-
|
| 235 |
-
# Ensure the result dictionary contains all class names
|
| 236 |
-
for class_name in class_names_5b:
|
| 237 |
-
if class_name not in result_5b:
|
| 238 |
-
result_5b[class_name] = 0.0
|
| 239 |
-
# Check if either class meets the confidence threshold
|
| 240 |
-
if result_5b['Deepfake'] >= confidence_threshold:
|
| 241 |
-
label_5b = f"AI, Confidence: {result_5b['Deepfake']:.4f}"
|
| 242 |
-
result_5boutput += ['AI']
|
| 243 |
-
elif result_5b['Real Image'] >= confidence_threshold:
|
| 244 |
-
label_5b = f"Real, Confidence: {result_5b['Real']:.4f}"
|
| 245 |
-
result_5boutput += ['REAL']
|
| 246 |
-
else:
|
| 247 |
-
label_5b = "Uncertain Classification"
|
| 248 |
-
result_5boutput += ['UNCERTAIN']
|
| 249 |
-
except Exception as e:
|
| 250 |
-
label_5b = f"Error: {str(e)}"
|
| 251 |
-
|
| 252 |
-
print(result_5boutput)
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# try:
|
| 256 |
-
# result_5output = [5, 'TBA', 0.0, 0.0, 'MAINTENANCE']
|
| 257 |
-
# img_bytes = convert_pil_to_bytes(img_pil)
|
| 258 |
-
# # print(img)
|
| 259 |
-
# # print(img_bytes)
|
| 260 |
-
# response5_raw = call_inference(img)
|
| 261 |
-
# print(response5_raw)
|
| 262 |
-
# response5 = response5_raw
|
| 263 |
-
# print(response5)
|
| 264 |
-
# label_5 = f"Result: {response5}"
|
| 265 |
-
|
| 266 |
-
# except Exception as e:
|
| 267 |
-
# label_5 = f"Error: {str(e)}"
|
| 268 |
-
|
| 269 |
|
| 270 |
-
# Combine results
|
| 271 |
combined_results = {
|
| 272 |
"SwinV2/detect": label_1,
|
| 273 |
"ViT/AI-vs-Real": label_2,
|
| 274 |
"Swin/SDXL": label_3,
|
| 275 |
"Swin/SDXL-FLUX": label_4,
|
| 276 |
"prithivMLmods": label_5,
|
| 277 |
-
"prithivMLmods-2-22": label_5b
|
| 278 |
}
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput ]
|
| 282 |
-
# html_content = generate_results_html(combined_outputs)
|
| 283 |
|
|
|
|
| 284 |
return img_pil, combined_outputs
|
| 285 |
|
|
|
|
| 286 |
# Define a function to generate the HTML content
|
| 287 |
# Define a function to generate the HTML content
|
| 288 |
def generate_results_html(results):
|
|
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
import io
|
| 9 |
+
import logging
|
| 10 |
+
from utils.utils import softmax, augment_image, convert_pil_to_bytes
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# Ensure using GPU if available
|
| 19 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
# Model paths and class names
|
| 23 |
+
MODEL_PATHS = {
|
| 24 |
+
"model_1": "haywoodsloan/ai-image-detector-deploy",
|
| 25 |
+
"model_2": "Heem2/AI-vs-Real-Image-Detection",
|
| 26 |
+
"model_3": "Organika/sdxl-detector",
|
| 27 |
+
"model_4": "cmckinle/sdxl-flux-detector",
|
| 28 |
+
"model_5": "prithivMLmods/Deep-Fake-Detector-v2-Model",
|
| 29 |
+
"model_5b": "prithivMLmods/Deepfake-Detection-Exp-02-22"
|
| 30 |
+
}
|
| 31 |
|
| 32 |
+
CLASS_NAMES = {
|
| 33 |
+
"model_1": ['artificial', 'real'],
|
| 34 |
+
"model_2": ['AI Image', 'Real Image'],
|
| 35 |
+
"model_3": ['AI', 'Real'],
|
| 36 |
+
"model_4": ['AI', 'Real'],
|
| 37 |
+
"model_5": ['Realism', 'Deepfake'],
|
| 38 |
+
"model_5b": ['Real', 'Deepfake']
|
| 39 |
+
}
|
| 40 |
|
| 41 |
+
# Load models and processors
|
| 42 |
+
def load_models():
|
| 43 |
+
image_processor_1 = AutoImageProcessor.from_pretrained(MODEL_PATHS["model_1"], use_fast=True)
|
| 44 |
+
model_1 = Swinv2ForImageClassification.from_pretrained(MODEL_PATHS["model_1"])
|
| 45 |
+
model_1 = model_1.to(device)
|
| 46 |
+
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device)
|
| 47 |
|
| 48 |
+
clf_2 = pipeline("image-classification", model=MODEL_PATHS["model_2"], device=device)
|
|
|
|
| 49 |
|
| 50 |
+
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
|
| 51 |
+
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_4"], device=device)
|
| 54 |
+
model_4 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_4"]).to(device)
|
|
|
|
| 55 |
|
| 56 |
+
clf_5 = pipeline("image-classification", model=MODEL_PATHS["model_5"], device=device)
|
| 57 |
+
clf_5b = pipeline("image-classification", model=MODEL_PATHS["model_5b"], device=device)
|
| 58 |
+
|
| 59 |
+
return clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
clf_1, clf_2, feature_extractor_3, model_3, feature_extractor_4, model_4, clf_5, clf_5b = load_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
@spaces.GPU(duration=10)
|
| 64 |
+
def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_name, model_id):
|
| 65 |
+
try:
|
| 66 |
+
prediction = clf(img_pil)
|
| 67 |
+
result = {pred['label']: pred['score'] for pred in prediction}
|
| 68 |
+
result_output = [model_id, model_name, result.get(class_names[1], 0.0), result.get(class_names[0], 0.0)]
|
| 69 |
+
logger.info(result_output)
|
| 70 |
+
for class_name in class_names:
|
| 71 |
+
if class_name not in result:
|
| 72 |
+
result[class_name] = 0.0
|
| 73 |
+
if result[class_names[0]] >= confidence_threshold:
|
| 74 |
+
label = f"AI, Confidence: {result[class_names[0]]:.4f}"
|
| 75 |
+
result_output.append('AI')
|
| 76 |
+
elif result[class_names[1]] >= confidence_threshold:
|
| 77 |
+
label = f"Real, Confidence: {result[class_names[1]]:.4f}"
|
| 78 |
+
result_output.append('REAL')
|
| 79 |
+
else:
|
| 80 |
+
label = "Uncertain Classification"
|
| 81 |
+
result_output.append('UNCERTAIN')
|
| 82 |
+
except Exception as e:
|
| 83 |
+
label = f"Error: {str(e)}"
|
| 84 |
+
return label, result_output
|
| 85 |
|
| 86 |
@spaces.GPU(duration=10)
|
| 87 |
def predict_image(img, confidence_threshold):
|
|
|
|
| 88 |
if not isinstance(img, Image.Image):
|
| 89 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
|
|
|
|
|
| 90 |
if img.mode != 'RGB':
|
| 91 |
img_pil = img.convert('RGB')
|
| 92 |
else:
|
| 93 |
img_pil = img
|
|
|
|
|
|
|
| 94 |
img_pil = transforms.Resize((256, 256))(img_pil)
|
|
|
|
| 95 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
|
| 98 |
+
label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifer", 2)
|
| 99 |
+
label_3, result_3output = predict_with_model(img_pil, feature_extractor_3, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3)
|
| 100 |
+
label_4, result_4output = predict_with_model(img_pil, feature_extractor_4, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4)
|
| 101 |
+
label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
|
| 102 |
+
label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
|
|
|
| 104 |
combined_results = {
|
| 105 |
"SwinV2/detect": label_1,
|
| 106 |
"ViT/AI-vs-Real": label_2,
|
| 107 |
"Swin/SDXL": label_3,
|
| 108 |
"Swin/SDXL-FLUX": label_4,
|
| 109 |
"prithivMLmods": label_5,
|
| 110 |
+
"prithivMLmods-2-22": label_5b
|
| 111 |
}
|
| 112 |
+
print(combined_results)
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
|
| 115 |
return img_pil, combined_outputs
|
| 116 |
|
| 117 |
+
|
| 118 |
# Define a function to generate the HTML content
|
| 119 |
# Define a function to generate the HTML content
|
| 120 |
def generate_results_html(results):
|
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import io
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
|
| 6 |
+
def softmax(vector):
|
| 7 |
+
e = np.exp(vector - np.max(vector)) # for numerical stability
|
| 8 |
+
return e / e.sum()
|
| 9 |
+
|
| 10 |
+
def augment_image(img_pil):
|
| 11 |
+
transform_flip = transforms.Compose([
|
| 12 |
+
transforms.RandomHorizontalFlip(p=1.0)
|
| 13 |
+
])
|
| 14 |
+
transform_rotate = transforms.Compose([
|
| 15 |
+
transforms.RandomRotation(degrees=(90, 90))
|
| 16 |
+
])
|
| 17 |
+
augmented_img_flip = transform_flip(img_pil)
|
| 18 |
+
augmented_img_rotate = transform_rotate(img_pil)
|
| 19 |
+
return augmented_img_flip, augmented_img_rotate
|
| 20 |
+
|
| 21 |
+
def convert_pil_to_bytes(image, format='JPEG'):
|
| 22 |
+
img_byte_arr = io.BytesIO()
|
| 23 |
+
image.save(img_byte_arr, format=format)
|
| 24 |
+
img_byte_arr = img_byte_arr.getvalue()
|
| 25 |
+
return img_byte_arr
|