Alberto Carmona commited on
Commit
f4631b5
·
1 Parent(s): c28c6ad

Remove sentiment analysis and entity recognition functions from get_news implementation

Browse files
Files changed (1) hide show
  1. tools.py +0 -53
tools.py CHANGED
@@ -40,64 +40,11 @@ def get_news(query: str) -> List[Dict]:
40
  "index": len(last_news) + 1,
41
  "title": res.get("title", "No title available"),
42
  "summary": res.get("content", "No summary available"),
43
- # "sentiment": analyze_sentiment(res.get("snippet", "")),
44
- # "entities": recognize_entities(res.get("snippet", ""))
45
  })
46
  print(f"Found {len(last_news)} articles.")
47
  return last_news
48
 
49
 
50
- def analyze_sentiment(text: str) -> str:
51
- """
52
- Analyzes the sentiment of the given text and returns the sentiment label.
53
-
54
- Args:
55
- text: The input text to analyze.
56
-
57
- Returns:
58
- str: The sentiment label, such as 'positive', 'negative', or 'neutral'.
59
- """
60
- prompt = f"""
61
- question: Tell me if the sentiment of this news is positive, negative, or neutral?
62
- context: {text}"""
63
- try:
64
- result = llm_openai.chat(
65
- messages=[ChatMessage(role="user", content=prompt)]
66
- )
67
- except Exception as e:
68
- return f"Error analyzing sentiment: {str(e)}"
69
- sentiment_label = result.message.content
70
- if "positive" in sentiment_label.lower():
71
- return "POSITIVE"
72
- elif "negative" in sentiment_label.lower():
73
- return "NEGATIVE"
74
- else:
75
- return "NEUTRAL"
76
-
77
-
78
- def recognize_entities(text: str) -> List[str]:
79
- """
80
- Recognizes named entities in the given text.
81
-
82
- Args:
83
- text: The input text in which to recognize entities.
84
-
85
- Returns:
86
- List[str]: A list of recognized entity names as strings.
87
- """
88
- prompt = f"""
89
- question: Tell me entities mentioned in this news?
90
- context: {text}"""
91
- try:
92
- result = llm_openai.chat(
93
- messages=[ChatMessage(role="user", content=prompt)]
94
- )
95
- except Exception as e:
96
- return f"Error recognizing entities: {str(e)}"
97
- entities = result.message.content.split(", ")
98
- return entities if entities else ["No entities found."]
99
-
100
-
101
  def generate_implications(article_index: int) -> str:
102
  """
103
  Generates a string describing the possible implications of a news article based on its index.
 
40
  "index": len(last_news) + 1,
41
  "title": res.get("title", "No title available"),
42
  "summary": res.get("content", "No summary available"),
 
 
43
  })
44
  print(f"Found {len(last_news)} articles.")
45
  return last_news
46
 
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  def generate_implications(article_index: int) -> str:
49
  """
50
  Generates a string describing the possible implications of a news article based on its index.