File size: 6,775 Bytes
d2bc90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c9368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bc90c
 
 
 
 
c7c9368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2bc90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c9368
 
d2bc90c
 
c7c9368
 
 
 
d2bc90c
 
 
 
 
 
 
 
 
 
 
c7c9368
 
 
 
d2bc90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7c9368
d2bc90c
 
a1b5165
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import os
from PIL import Image
import requests
import base64
import io
from dotenv import load_dotenv

load_dotenv()

example_path = os.path.join(os.path.dirname(__file__), 'examples')

def image_to_base64(image_path):  # Remove 'self'
    """Convert image file to base64 string"""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode()

def base64_to_image(base64_str, output_path):  # Remove 'self'
    """Convert base64 string to image file"""
    image_data = base64.b64decode(base64_str)
    image = Image.open(io.BytesIO(image_data))
    image.save(output_path)
    return image

def download_image_from_url(url, output_path):
    """Download image from URL and save to local path"""
    try:
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        
        # Save the image
        with open(output_path, 'wb') as f:
            f.write(response.content)
        
        # Verify it's a valid image
        image = Image.open(output_path)
        return output_path
    except Exception as e:
        print(f"Error downloading image from {url}: {str(e)}")
        return None

def url_to_base64(url):
    """Convert image URL to base64 string"""
    try:
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        return base64.b64encode(response.content).decode()
    except Exception as e:
        print(f"Error converting URL to base64: {str(e)}")
        return None

def run_viton(model_image_path, garment_image_path, model_url, garment_url,
                n_steps=20, image_scale=2.0, seed=-1):
    try:
        api_url = os.environ.get("SERVER_URL")
        print(f"Using API URL: {api_url}")  # Add this to debug
        
        # Determine which inputs to use (file upload or URL)
        model_b64 = None
        garment_b64 = None
        
        # Handle model image
        if model_url and model_url.strip():
            print(f"Using model URL: {model_url}")
            model_b64 = url_to_base64(model_url.strip())
        elif model_image_path:
            print(f"Using model file: {model_image_path}")
            model_b64 = image_to_base64(model_image_path)
        
        # Handle garment image
        if garment_url and garment_url.strip():
            print(f"Using garment URL: {garment_url}")
            garment_b64 = url_to_base64(garment_url.strip())
        elif garment_image_path:
            print(f"Using garment file: {garment_image_path}")
            garment_b64 = image_to_base64(garment_image_path)
        
        # Check if we have both images
        if not model_b64 or not garment_b64:
            print("Error: Missing model or garment image")
            return []

        # Prepare request
        request_data = {
            "model_image_base64": model_b64,
            "garment_image_base64": garment_b64,
            "n_samples": 1,
            "n_steps": n_steps,
            "image_scale": image_scale,
            "seed": seed
        }
                
        # Send request
        response = requests.post(f"{api_url}/viton", 
                                json=request_data, 
                                timeout=300)
        
        print(f"Request sent to {api_url}/viton")
        print(f"Response status code: {response.status_code}")
        
        if response.status_code == 200:
            result = response.json()
            if result.get("error"):
                print(f"Error: {result['error']}")
                return []
            
            generated_images = []
            for i, img_b64 in enumerate(result.get("images_base64", [])):
                output_path = f"ootd_output_{i}.png"
                img = base64_to_image(img_b64, output_path)  # Remove 'self.'
                generated_images.append(img)
            
            print(f"Successfully generated {len(generated_images)} images")
            return generated_images
        else:
            print(f"Request failed with status code: {response.status_code}")
            return []  # Fix: was missing 'return'
            
    except Exception as e:
        print(f"Exception occurred: {str(e)}")  # Add this
        return []  # Fix: should return list, not dict for gallery

block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("# Virtual Try-On")
    with gr.Row():
        gr.Markdown("**Instructions:** You can either upload images using the file upload interface or provide direct URLs to images. URL inputs will take priority over uploaded files.")
    with gr.Row():
        with gr.Column():
            model_url = gr.Textbox(
                label="Enter Model Image URL", 
            )
            vton_img = gr.Image(label="Model", sources=['upload', 'webcam'], type="filepath", height=384)
            example = gr.Examples(
                inputs=vton_img,
                examples_per_page=5,
                examples=[
                    os.path.join(example_path, 'model/model_8.png'),
                    os.path.join(example_path, 'model/model_2.png'),
                    os.path.join(example_path, 'model/model_7.png'),
                    os.path.join(example_path, 'model/model_4.png'),
                    os.path.join(example_path, 'model/model_5.png'),
                ])
        with gr.Column():
            garment_url = gr.Textbox(
                label="Enter Garment Image URL", 
            )
            garm_img = gr.Image(label="Garment", sources=['upload', 'webcam'], type="filepath", height=384)
            example = gr.Examples(
                inputs=garm_img,
                examples_per_page=5,
                examples=[
                    os.path.join(example_path, 'garment/00055_00.jpg'),
                    os.path.join(example_path, 'garment/07764_00.jpg'),
                    os.path.join(example_path, 'garment/03032_00.jpg'),
                    os.path.join(example_path, 'garment/048554_1.jpg'),
                    os.path.join(example_path, 'garment/049805_1.jpg'),
                ])
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)   
    with gr.Column():
        run_button = gr.Button(value="Run")
        n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
        image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
        seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
        
    ips = [vton_img, garm_img, model_url, garment_url, n_steps, image_scale, seed]
    run_button.click(fn=run_viton, inputs=ips, outputs=result_gallery)

block.launch(mcp_server=True)