File size: 16,971 Bytes
faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 490df47 faf2a20 98982a2 d36b115 98982a2 301869b d36b115 301869b d36b115 301869b 98982a2 301869b 876da9e 301869b 98982a2 603c1b4 faf2a20 490df47 faf2a20 5ae73af faf2a20 490df47 faf2a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import os
import io
import regex
import pickle
import traceback
import copy
import datetime
import dateutil.relativedelta
import multiprocess
from multiprocess import Pool
from typing import Any, Dict, Optional, Tuple, List, Union
from pebble import ProcessPool
from tqdm import tqdm
from concurrent.futures import TimeoutError
from functools import partial
from timeout_decorator import timeout
from contextlib import redirect_stdout
import base64
from io import BytesIO
from PIL import Image
import pdb
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def base64_to_image(
base64_str: str,
remove_prefix: bool = True,
convert_mode: Optional[str] = "RGB"
) -> Union[Image.Image, None]:
"""
将Base64编码的图片字符串转换为PIL Image对象
Args:
base64_str: Base64编码的图片字符串(可带data:前缀)
remove_prefix: 是否自动去除"...")
>>> img = base64_to_image("iVBORw0KGg...", remove_prefix=False)
"""
try:
# 1. 处理Base64前缀
if remove_prefix and "," in base64_str:
base64_str = base64_str.split(",")[1]
# 2. 解码Base64
image_data = base64.b64decode(base64_str)
# 3. 转换为PIL Image
image = Image.open(BytesIO(image_data))
# 4. 可选模式转换
if convert_mode:
image = image.convert(convert_mode)
return image
except (base64.binascii.Error, OSError, Exception) as e:
print(f"Base64解码失败: {str(e)}")
return None
class GenericRuntime:
GLOBAL_DICT = {}
LOCAL_DICT = None
HEADERS = []
def __init__(self):
self._global_vars = copy.copy(self.GLOBAL_DICT)
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
self._captured_figures = []
for c in self.HEADERS:
self.exec_code(c)
def exec_code(self, code_piece: str) -> None:
if regex.search(r"(\s|^)?input\(", code_piece) or regex.search(
r"(\s|^)?os.system\(", code_piece
):
raise RuntimeError("Forbidden function calls detected")
# 检测并修改plt.show()调用
if "plt.show()" in code_piece:
modified_code = code_piece.replace("plt.show()", """
# 捕获当前图像
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
_captured_image = base64.b64encode(buf.read()).decode('utf-8')
_captured_figures.append(_captured_image)
plt.close()
""")
# 确保_captured_figures变量存在
if "_captured_figures" not in self._global_vars:
self._global_vars["_captured_figures"] = []
exec(modified_code, self._global_vars)
else:
exec(code_piece, self._global_vars)
def eval_code(self, expr: str) -> Any:
return eval(expr, self._global_vars)
def inject(self, var_dict: Dict[str, Any]) -> None:
for k, v in var_dict.items():
self._global_vars[k] = v
@property
def answer(self):
return self._global_vars.get("answer", None)
@property
def captured_figures(self):
return self._global_vars.get("_captured_figures", [])
class ImageRuntime(GenericRuntime):
# """支持图像处理的运行时环境"""
# GLOBAL_DICT = {} # 不预加载模块,避免序列化问题
# LOCAL_DICT = None
HEADERS = [
"import matplotlib",
"matplotlib.use('Agg')", # 使用非交互式后端
"import matplotlib.pyplot as plt",
"from PIL import Image",
"import io",
"import base64",
"import numpy as np",
"_captured_figures = []", # 初始化图像捕获列表
]
def __init__(self, messages):
super().__init__()
# pdb.set_trace()
self._global_vars = copy.copy(self.GLOBAL_DICT)
self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
self._captured_figures = []
for c in self.HEADERS:
self.exec_code(c)
image_var_dict = {}
image_var_idx = 0
for message_item in messages:
content = message_item['content'] # {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
for item in content:
item_type = item['type']
if item_type == "image_url":
item_image_url = item['image_url']['url']
image = base64_to_image(item_image_url)
image_var_dict[f"image_clue_{image_var_idx}"] = image
image_var_idx += 1
self.inject(image_var_dict)
class DateRuntime(GenericRuntime):
GLOBAL_DICT = {}
HEADERS = [
"import datetime",
"from dateutil.relativedelta import relativedelta",
"timedelta = relativedelta"
]
class CustomDict(dict):
def __iter__(self):
return list(super().__iter__()).__iter__()
class ColorObjectRuntime(GenericRuntime):
GLOBAL_DICT = {"dict": CustomDict}
class PythonExecutor:
def __init__(
self,
runtime_class=None,
get_answer_symbol: Optional[str] = None,
get_answer_expr: Optional[str] = None,
get_answer_from_stdout: bool = True,
timeout_length: int = 20,
) -> None:
self.runtime_class = runtime_class if runtime_class else ImageRuntime
print(self.runtime_class)
self.answer_symbol = get_answer_symbol
self.answer_expr = get_answer_expr
self.get_answer_from_stdout = get_answer_from_stdout
self.timeout_length = timeout_length
# Create a persistent runtime instance if messages are provided
self.persistent_runtime = None
def process_generation_to_code(self, gens: str):
return [g.split("\n") for g in gens]
# def execute(
# self,
# code,
# messages,
# get_answer_from_stdout=True,
# runtime_class=None,
# # run_time_instance=None,
# answer_symbol=None,
# answer_expr=None,
# # 移除 timeout_length 参数
# ) -> Tuple[Union[str, Dict[str, Any]], str]:
# # print("dome")
# # try:
# # 在每个进程中创建新的运行时实例
# print(runtime_class)
# # runtime = runtime_class(messages)
# runtime = self.persistent_runtime
# if get_answer_from_stdout:
# program_io = io.StringIO()
# with redirect_stdout(program_io):
# # 移除 timeout 调用
# runtime.exec_code("\n".join(code))
# program_io.seek(0)
# result = program_io.read()
# elif answer_symbol:
# # 移除 timeout 调用
# runtime.exec_code("\n".join(code))
# result = runtime._global_vars.get(answer_symbol, "")
# elif answer_expr:
# # 移除 timeout 调用
# runtime.exec_code("\n".join(code))
# # 移除 timeout 调用
# result = runtime.eval_code(answer_expr)
# else:
# if len(code) > 1:
# # 移除 timeout 调用
# runtime.exec_code("\n".join(code[:-1]))
# # 移除 timeout 调用
# result = runtime.eval_code(code[-1])
# else:
# # 移除 timeout 调用
# runtime.exec_code("\n".join(code))
# result = ""
# # 检查是否有捕获的图像
# captured_figures = runtime._global_vars.get("_captured_figures", [])
# if captured_figures:
# # 如果有文本输出和图像,将它们组合
# if result:
# result = {
# 'text': result,
# 'images': captured_figures
# }
# else:
# result = {'images': captured_figures}
# else:
# if result:
# result = {
# 'text': result,
# }
# report = "Done"
# # except Exception as e:
# # result = ""
# # report = f"Error: {str(e)}\n{traceback.format_exc()}"
# # 确保结果可序列化
# try:
# pickle.dumps(result)
# except Exception as e:
# result = f"Result serialization error: {str(e)}"
# report = f"Serialization Error: {str(e)}"
# return result, report
def execute(
self,
code,
messages,
get_answer_from_stdout=True,
runtime_class=None,
answer_symbol=None,
answer_expr=None,
) -> Tuple[Union[str, Dict[str, Any]], str]:
print(runtime_class)
runtime = self.persistent_runtime
try:
if get_answer_from_stdout:
program_io = io.StringIO()
with redirect_stdout(program_io):
runtime.exec_code("\n".join(code))
program_io.seek(0)
result = program_io.read()
elif answer_symbol:
runtime.exec_code("\n".join(code))
result = runtime._global_vars.get(answer_symbol, "")
elif answer_expr:
runtime.exec_code("\n".join(code))
result = runtime.eval_code(answer_expr)
else:
if len(code) > 1:
runtime.exec_code("\n".join(code[:-1]))
result = runtime.eval_code(code[-1])
else:
runtime.exec_code("\n".join(code))
result = ""
# Check for captured figures
captured_figures = runtime._global_vars.get("_captured_figures", [])
if captured_figures:
result = {
'text': result,
'images': captured_figures
} if result else {'images': captured_figures}
else:
result = {'text': result} if result else {}
report = "Done"
except Exception as e:
result = {
'error': str(e),
'traceback': traceback.format_exc()
}
report = f"Error: {str(e)}"
# Ensure result is serializable
try:
pickle.dumps(result)
except Exception as e:
result = f"Result serialization error: {str(e)}"
report = f"Serialization Error: {str(e)}"
return result, report
def apply(self, code, messages):
return self.batch_apply([code], messages)[0]
@staticmethod
def truncate(s, max_length=400):
if isinstance(s, dict):
# 如果是字典(包含图像),只截断文本部分
if 'text' in s:
half = max_length // 2
if len(s['text']) > max_length:
s['text'] = s['text'][:half] + "..." + s['text'][-half:]
return s
else:
half = max_length // 2
if isinstance(s, str) and len(s) > max_length:
s = s[:half] + "..." + s[-half:]
return s
def update_persistent_runtime_with_messages():
pass
def get_persistent_runtime(self):
return self.persistent_runtime
def batch_apply(self, batch_code, messages):
if not self.persistent_runtime and messages:
self.persistent_runtime = self.runtime_class(messages)
all_code_snippets = self.process_generation_to_code(batch_code)
timeout_cnt = 0
all_exec_results = []
# 去掉 ProcessPool,改为单进程顺序执行
if len(all_code_snippets) > 100:
progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
else:
progress_bar = None
for code in all_code_snippets:
try:
# 直接调用 self.execute,而不是用 ProcessPool
result = self.execute(
code,
messages=messages,
get_answer_from_stdout=self.get_answer_from_stdout,
runtime_class=self.runtime_class,
answer_symbol=self.answer_symbol,
answer_expr=self.answer_expr,
# timeout_length=self.timeout_length,
)
all_exec_results.append(result)
except TimeoutError as error:
print(error)
all_exec_results.append(("", "Timeout Error"))
timeout_cnt += 1
except Exception as error:
print(f"Error in batch_apply: {error}")
all_exec_results.append(("", f"Error: {str(error)}"))
if progress_bar is not None:
progress_bar.update(1)
if progress_bar is not None:
progress_bar.close()
batch_results = []
for code, (res, report) in zip(all_code_snippets, all_exec_results):
# 处理结果
if isinstance(res, dict):
# 如果结果包含图像,特殊处理
if 'text' in res:
res['text'] = str(res['text']).strip()
res['text'] = self.truncate(res['text'])
report = str(report).strip()
report = self.truncate(report)
else:
# 普通文本结果
res = str(res).strip()
res = self.truncate(res)
report = str(report).strip()
report = self.truncate(report)
batch_results.append((res, report))
return batch_results
def _test():
image_path = "/mnt/petrelfs/zhaoshitian/vis_tool_inference_engine/test_data/0.JPG"
image_base64 = encode_image(image_path)
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "From the information on that advertising board, what is the type of this shop?"}]
},
{
"role": "user",
"content": [{"type": "text", "text": "image_clue_0"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}]
}
]
# 测试普通计算
math_code ="""
a = 1
b = 2
c = a + b
print(c)
"""
batch_code = [math_code]
executor = PythonExecutor()
predictions = executor.apply(batch_code[0], messages)
print("数学计算结果:", predictions)
# 测试图像显示
image_code = """
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import io
# 创建一个简单的图像
x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.figure(figsize=(8, 6))
plt.plot(x, y, 'r-', linewidth=2)
plt.title('Sine Wave')
plt.grid(True)
plt.show()
# 也可以显示一个简单的图像
# 创建一个彩色渐变图像
arr = np.zeros((100, 100, 3), dtype=np.uint8)
for i in range(100):
for j in range(100):
arr[i, j, 0] = i # 红色通道
arr[i, j, 1] = j # 绿色通道
arr[i, j, 2] = 100 # 蓝色通道
img = Image.fromarray(arr)
plt.figure()
plt.imshow(img)
plt.title('Gradient Image')
plt.show()
print("图像生成完成")
"""
image_code = """
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import io
plt.imshow(image_clue_0)
plt.title("Original Image - Locate Advertising Board")
plt.show()
"""
image_result = executor.apply(image_code, messages)
print("\n图像结果类型:", type(image_result[0]))
if isinstance(image_result[0], dict) and 'images' in image_result[0]:
print(f"捕获到 {len(image_result[0]['images'])} 个图像")
print("第一个图像的base64编码前20个字符:", image_result[0]['images'][0][:20])
# 可选:保存图像到文件
for i, img_data in enumerate(image_result[0]['images']):
img_bytes = base64.b64decode(img_data)
with open(f"captured_image_{i}.png", "wb") as f:
f.write(img_bytes)
print(f"图像已保存为 captured_image_{i}.png")
if 'text' in image_result[0]:
print("文本输出:", image_result[0]['text'])
else:
print("未捕获到图像")
print("结果:", image_result[0])
print("\n执行状态:", image_result[1])
if __name__ == "__main__":
_test()
|