File size: 14,688 Bytes
b3f97e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840e6fc
b3f97e9
 
 
 
 
 
 
 
 
 
 
 
 
 
840e6fc
b3f97e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import os
import io
import regex
import pickle
import traceback
import copy
import datetime
import dateutil.relativedelta
import multiprocess
from multiprocess import Pool
from typing import Any, Dict, Optional, Tuple, List, Union
from pebble import ProcessPool
from tqdm import tqdm
from concurrent.futures import TimeoutError
from functools import partial
from timeout_decorator import timeout
from contextlib import redirect_stdout
import base64
from io import BytesIO
from PIL import Image
import pdb

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def base64_to_image(
    base64_str: str, 
    remove_prefix: bool = True, 
    convert_mode: Optional[str] = "RGB"
) -> Union[Image.Image, None]:
    """
    将Base64编码的图片字符串转换为PIL Image对象
    
    Args:
        base64_str: Base64编码的图片字符串(可带data:前缀)
        remove_prefix: 是否自动去除"...")
        >>> img = base64_to_image("iVBORw0KGg...", remove_prefix=False)
    """
    try:
        # 1. 处理Base64前缀
        if remove_prefix and "," in base64_str:
            base64_str = base64_str.split(",")[1]

        # 2. 解码Base64
        image_data = base64.b64decode(base64_str)
        
        # 3. 转换为PIL Image
        image = Image.open(BytesIO(image_data))
        
        # 4. 可选模式转换
        if convert_mode:
            image = image.convert(convert_mode)
            
        return image
    
    except (base64.binascii.Error, OSError, Exception) as e:
        print(f"Base64解码失败: {str(e)}")
        return None


class GenericRuntime:
    GLOBAL_DICT = {}
    LOCAL_DICT = None
    HEADERS = []

    def __init__(self):
        self._global_vars = copy.copy(self.GLOBAL_DICT)
        self._local_vars = copy.copy(self.LOCAL_DICT) if self.LOCAL_DICT else None
        self._captured_figures = []

        for c in self.HEADERS:
            self.exec_code(c)

    def exec_code(self, code_piece: str) -> None:
        if regex.search(r"(\s|^)?input\(", code_piece) or regex.search(
            r"(\s|^)?os.system\(", code_piece
        ):
            raise RuntimeError("Forbidden function calls detected")

        
        
        # 检测并修改plt.show()调用
        if "plt.show()" in code_piece:
            modified_code = code_piece.replace("plt.show()", """
# 捕获当前图像
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
_captured_image = base64.b64encode(buf.read()).decode('utf-8')
_captured_figures.append(_captured_image)
plt.close()
""")
            # 确保_captured_figures变量存在
            if "_captured_figures" not in self._global_vars:
                self._global_vars["_captured_figures"] = []
            
            exec(modified_code, self._global_vars)
        else:
            print("###################################### I am excuting code. ##############################################")
            exec(code_piece, self._global_vars)

    def eval_code(self, expr: str) -> Any:
        return eval(expr, self._global_vars)

    def inject(self, var_dict: Dict[str, Any]) -> None:
        for k, v in var_dict.items():
            self._global_vars[k] = v

    @property
    def answer(self):
        return self._global_vars.get("answer", None)
    
    @property
    def captured_figures(self):
        return self._global_vars.get("_captured_figures", [])


class ImageRuntime(GenericRuntime):
    """支持图像处理的运行时环境"""
    GLOBAL_DICT = {}  # 不预加载模块,避免序列化问题
    LOCAL_DICT = None
    
    HEADERS = [
        "import matplotlib",
        "matplotlib.use('Agg')",  # 使用非交互式后端
        "import matplotlib.pyplot as plt",
        "from PIL import Image",
        "import io",
        "import base64",
        "import numpy as np",
        "_captured_figures = []",  # 初始化图像捕获列表
    ]

    def __init__(self, messages):
        super().__init__()

        image_var_dict = {}
        image_var_idx = 0
        for message_item in messages:
            content = message_item['content']  # {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
            for item in content:
                item_type = item['type']
                if item_type == "image_url":
                    item_image_url = item['image_url']['url']
                    image = base64_to_image(item_image_url)
                    image_var_dict[f"image_clue_{image_var_idx}"] = image
                    image_var_idx += 1

        self.inject(image_var_dict)
        print("##################### Initialized ImageRuntime. ##########################")
                    

class DateRuntime(GenericRuntime):
    GLOBAL_DICT = {}
    HEADERS = [
        "import datetime",
        "from dateutil.relativedelta import relativedelta",
        "timedelta = relativedelta"
    ]


class CustomDict(dict):
    def __iter__(self):
        return list(super().__iter__()).__iter__()


class ColorObjectRuntime(GenericRuntime):
    GLOBAL_DICT = {"dict": CustomDict}


class PythonExecutor:
    def __init__(
        self,
        runtime_class=None,
        get_answer_symbol: Optional[str] = None,
        get_answer_expr: Optional[str] = None,
        get_answer_from_stdout: bool = True,
        timeout_length: int = 20,
    ) -> None:
        print(f"#################### When Init PythonExcutor, RunTime typel:, TimeOut Length: {timeout_length} #############################")
        self.runtime_class = runtime_class if runtime_class else ImageRuntime
        print(self.runtime_class)
        self.answer_symbol = get_answer_symbol
        self.answer_expr = get_answer_expr
        self.get_answer_from_stdout = get_answer_from_stdout
        self.pool = Pool(multiprocess.cpu_count())
        self.timeout_length = timeout_length

    def process_generation_to_code(self, gens: str):
        return [g.split("\n") for g in gens]

    @staticmethod
    def execute(
        code,
        messages,
        get_answer_from_stdout=True,
        runtime_class=None,
        answer_symbol=None,
        answer_expr=None,
        timeout_length=20,
    ) -> Tuple[Union[str, Dict[str, Any]], str]:
        # print("dome")
        try:
            # 在每个进程中创建新的运行时实例
            runtime = runtime_class(messages)
            
            if get_answer_from_stdout:
                program_io = io.StringIO()
                with redirect_stdout(program_io):
                    timeout(timeout_length)(runtime.exec_code)("\n".join(code))
                program_io.seek(0)
                result = program_io.read()
            elif answer_symbol:
                timeout(timeout_length)(runtime.exec_code)("\n".join(code))
                result = runtime._global_vars.get(answer_symbol, "")
            elif answer_expr:
                timeout(timeout_length)(runtime.exec_code)("\n".join(code))
                result = timeout(timeout_length)(runtime.eval_code)(answer_expr)
            else:
                if len(code) > 1:
                    timeout(timeout_length)(runtime.exec_code)("\n".join(code[:-1]))
                    result = timeout(timeout_length)(runtime.eval_code)(code[-1])
                else:
                    timeout(timeout_length)(runtime.exec_code)("\n".join(code))
                    result = ""
            
            # 检查是否有捕获的图像
            captured_figures = runtime._global_vars.get("_captured_figures", [])
            if captured_figures:
                # 如果有文本输出和图像,将它们组合
                if result:
                    result = {
                        'text': result,
                        'images': captured_figures
                    }
                else:
                    result = {'images': captured_figures}
            
            report = "Done"
        except Exception as e:
            result = ""
            report = f"Error: {str(e)}\n{traceback.format_exc()}"
        
        # 确保结果可序列化
        try:
            pickle.dumps(result)
        except Exception as e:
            result = f"Result serialization error: {str(e)}"
            report = f"Serialization Error: {str(e)}"
            
        return result, report

    def apply(self, code, messages):
        return self.batch_apply([code], messages)[0]

    @staticmethod
    def truncate(s, max_length=400):
        if isinstance(s, dict):
            # 如果是字典(包含图像),只截断文本部分
            if 'text' in s:
                half = max_length // 2
                if len(s['text']) > max_length:
                    s['text'] = s['text'][:half] + "..." + s['text'][-half:]
            return s
        else:
            half = max_length // 2
            if isinstance(s, str) and len(s) > max_length:
                s = s[:half] + "..." + s[-half:]
            return s

    def batch_apply(self, batch_code, messages):
        all_code_snippets = self.process_generation_to_code(batch_code)

        timeout_cnt = 0
        all_exec_results = []
        print(f"################################### num of cpu: {os.cpu_count()} ; len of code: {len(all_code_snippets)} ######################################")
        with ProcessPool(
            max_workers=min(len(all_code_snippets), os.cpu_count())
        ) as pool:
            executor = partial(
                self.execute,
                get_answer_from_stdout=self.get_answer_from_stdout,
                runtime_class=self.runtime_class,
                answer_symbol=self.answer_symbol,
                answer_expr=self.answer_expr,
                timeout_length=self.timeout_length,
            )
            future = pool.map(executor, all_code_snippets, [messages], timeout=self.timeout_length)
            iterator = future.result()

            if len(all_code_snippets) > 100:
                progress_bar = tqdm(total=len(all_code_snippets), desc="Execute")
            else:
                progress_bar = None

            while True:
                try:
                    result = next(iterator)
                    all_exec_results.append(result)
                except StopIteration:
                    break
                except TimeoutError as error:
                    print(error)
                    all_exec_results.append(("", "Timeout Error"))
                    timeout_cnt += 1
                except Exception as error:
                    print(f"Error in batch_apply: {error}")
                    all_exec_results.append(("", f"Error: {str(error)}"))
                if progress_bar is not None:
                    progress_bar.update(1)

            if progress_bar is not None:
                progress_bar.close()

        batch_results = []
        for code, (res, report) in zip(all_code_snippets, all_exec_results):
            # 处理结果
            if isinstance(res, dict):
                # 如果结果包含图像,特殊处理
                if 'text' in res:
                    res['text'] = str(res['text']).strip()
                    res['text'] = self.truncate(res['text'])
                report = str(report).strip()
                report = self.truncate(report)
            else:
                # 普通文本结果
                res = str(res).strip()
                res = self.truncate(res)
                report = str(report).strip()
                report = self.truncate(report)
            batch_results.append((res, report))
        return batch_results


def _test():
    image_path = "/mnt/petrelfs/zhaoshitian/vis_tool_inference_engine/test_data/0.JPG"
    image_base64 = encode_image(image_path)
    messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": "From the information on that advertising board, what is the type of this shop?"}]
        },
        {
            "role": "user",
            "content": [{"type": "text", "text": "image_clue_0"}] + [{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base64}"}}]
        }
    ]
    # 测试普通计算
    math_code ="""
a = 1
b = 2
c = a + b
print(c)
"""

    batch_code = [math_code]

    executor = PythonExecutor()
    predictions = executor.apply(batch_code[0], messages)
    print("数学计算结果:", predictions)
    
    # 测试图像显示
    image_code = """
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import io

# 创建一个简单的图像
x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.figure(figsize=(8, 6))
plt.plot(x, y, 'r-', linewidth=2)
plt.title('Sine Wave')
plt.grid(True)
plt.show()

# 也可以显示一个简单的图像
# 创建一个彩色渐变图像
arr = np.zeros((100, 100, 3), dtype=np.uint8)
for i in range(100):
    for j in range(100):
        arr[i, j, 0] = i  # 红色通道
        arr[i, j, 1] = j  # 绿色通道
        arr[i, j, 2] = 100  # 蓝色通道

img = Image.fromarray(arr)
plt.figure()
plt.imshow(img)
plt.title('Gradient Image')
plt.show()

print("图像生成完成")
    """

    image_code = """
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import io

plt.imshow(image_clue_0)
plt.title("Original Image - Locate Advertising Board")
plt.show()
    """
    
    image_result = executor.apply(image_code, messages)
    print("\n图像结果类型:", type(image_result[0]))
    if isinstance(image_result[0], dict) and 'images' in image_result[0]:
        print(f"捕获到 {len(image_result[0]['images'])} 个图像")
        print("第一个图像的base64编码前20个字符:", image_result[0]['images'][0][:20])
        
        # 可选:保存图像到文件
        for i, img_data in enumerate(image_result[0]['images']):
            img_bytes = base64.b64decode(img_data)
            with open(f"captured_image_{i}.png", "wb") as f:
                f.write(img_bytes)
            print(f"图像已保存为 captured_image_{i}.png")
            
        if 'text' in image_result[0]:
            print("文本输出:", image_result[0]['text'])
    else:
        print("未捕获到图像")
        print("结果:", image_result[0])
    
    print("\n执行状态:", image_result[1])


if __name__ == "__main__":
    _test()